
AN10381
Nesting of interrupts in the LPC2000
Rev. 01 — 6 June 2005 Application note

Document information
Info Content
Keywords nested, reentrant, interrupts, LPC2000

Abstract Details on reentrant interrupt handlers and code examples for the same is
provided

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
Revision history
Rev Date Description

01 20050606 Initial version
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 2 of 14

Contact information
For additional information, please visit: http://www.semiconductors.philips.com

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
1. Introduction

This application note provides code examples for effectively handling reentrant interrupt
handlers in the LPC2000 devices. The following organization is been adopted for this
application note.

1. Interrupt handling overview
2. Nesting of Interrupts
3. Code examples

It is assumed for this application note, that the user is familiar with the ARM7TDMI-S
architecture. Also, for code examples relating to simple interrupt handling using FIQ and
IRQ, please refer to the AN10254_1 application note available online. All the code
examples provided in this application note were built on the Keil MicroVision3 ARM
compiler (an evaluation version of which is free for download at www.keil.com)

2. Interrupt handling overview

2.1 Interrupt levels in the ARM7 core
The ARM7 processor supports two levels of interrupts: Interrupt Request (IRQ) and Fast
Interrupt Request (FIQ). ARM recommends only one interrupt source to be classified as
an FIQ. All other interrupt sources could be classified as IRQ’s and they could be
programmed for reentrancy. Also, IRQ’s could be vectored or non-vectored (In this
application note, we are only considering vectored IRQ’s).

2.2 Vectored Interrupt Controller (VIC)
The VIC takes all the interrupt requests from different sources and assigns them into three
categories, FIQ, vectored IRQ and non-vectored IRQ. FIQ has the highest priority.
Vectored IRQ’s can take sixteen interrupt requests and prioritize them within sixteen
vectored IRQ slots among which slot zero has the highest priority and slot fifteen has the
lowest priority. Non-vectored IRQ’s have the lowest priority. The VIC OR’s the request
from both the vectored and non-vectored IRQ’s and generates the IRQ signal to the
ARM7 core.

2.3 ARM7 core’s response to an IRQ/FIQ
The processor does the following on an IRQ or FIQ interrupt:

1. Copies the CPSR into the SPSR for the mode in which the exception is to be handled.
2. Changes the CPSR mode bits in order to:

a. Change to the appropriate mode and map in the appropriate banked registers for
that mode.

b. Disable interrupts, IRQ’s are disabled when any exception occurs. FIQ’s are
disabled when an FIQ occurs and on reset.

3. Sets the LR_mode to the return address.
4. Sets the Program Counter (PC) to the vector address of the exception. This forces a

branch to the appropriate exception handler.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 3 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
An illustration of the Core’s response to an IRQ interrupt is shown below.

1. LR_irq= address of the next instruction to be executed + 4.
2. SPSR_irq=CPSR.
3. CPSR[4:0]=10010 (Mode bits for entering IRQ mode).
4. CPSR[5]=0 (Execute in ARM state).
5. CPSR[7]= 1 (Disable interrupts).
6. PC=0x18 (Exception vector for IRQ).

During application development, the user need not worry about the ARM7 core’s
response to an IRQ or FIQ interrupt. Please refer to the next section on the guidelines to
be followed for simple interrupt handling.

2.4 Simple interrupt handling in the LPC2000
Some of the important aspects to be considered while programming interrupts for the
LPC2000 are mentioned below. For code examples on the below points, please refer to
the simple interrupt handling using FIQ and IRQ (AN10254_1) application note available
online.

1. On reset, the ARM7 core has interrupts disabled. Interrupts have to be enabled in the
CPSR. This is usually handled by the startup assembly file which is accompanied with
the example projects in the Keil environment. Most compilers provide a startup file in
ARM assembly which handles the basic startup code.

2. Exception vectors should be linked and programmed correctly. This is usually
managed by the linker. Also appropriate handlers need to be programmed at the
respective locations. For instance at the IRQ vector (0x18) the following instruction
should exist if the ISR address is read directly from the VIC Vector Address Register
(Register location- 0xFFFF030).
LDR PC[PC,#-0xFF0]

3. Stack pointers should be programmed correctly for FIQ and IRQ.
4. The VIC is programmed correctly with the ISR address. This needs to be handled in

the application.
5. Compiler supported keywords are used for the Interrupt handlers. For instance in Keil,

an ISR function could have the following form.
void IRQ_Handler()__irq

More details on compiler keywords is provided in the next section.

2.5 Compiler support for writing ISR’s
ARM compilers provide keywords for both FIQ and IRQ which could be applied to a C
function thereby writing the complete ISR in C. Below is the typical example from the Keil
C ARM compiler:

void IRQ_Handler __irq{

// Clear the source of the interrupt

// Additional statements
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 4 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
// Update the VIC by writing to VIC Vector Address Register

}

By using the __irq keyword, the Compiler generates the following code for the above
function

1. On function entry, the work registers (including all ARM-Thumb Procedure Call
Standard (ATPCS) corruptible registers) are pushed into the stack.

2. On exit, these registers are popped.
3. The SUBS PC,R14,#4 instruction is used to return from the IRQ function. This

instruction restores the PC and the CPSR.

Note: The SPSR_irq is not saved when the Compiler provided IRQ keyword is used. This
is the one of the reasons why this approach cannot be used for nesting of interrupts.

2.5.1 Problems with nesting of interrupts using compiler keywords
Two main reasons for the problems to occur are related to LR_irq and SPSR_irq.

If an interrupt handler re-enables interrupts, then calls a subroutine and another interrupt
occurs, the return address of the subroutine (stored in the LR_irq) is corrupted when the
second IRQ is taken. Lets illustrate this problem with an example:

void IRQ_Handler __irq{

// reenable interrupts

foo();
}

When the PC jumps to IRQ_Handler (after executing the instruction at 0x18), the return
address from this ISR is already stored in LR_irq. Say this is pushed into the stack
(SP_irq). Now when foo() is called, the LR_irq get overwritten with the address of the
instruction following foo(). Further assume that while code is executing is foo(), a second
higher priority interrupt takes place. In this case, LR_irq is overwritten with the return
address to foo() thereby corrupting the return address to IRQ_Handler().

Also SPSR_irq is not saved by the Compiler supported Keywords

3. Nesting of interrupts

A reentrant interrupt handler must save the IRQ state, switch processor modes and save
the state of the new processor mode before branching to a nested subroutine of C
function. ARM recommends switching to System mode while programming reentrant
interrupt handlers.

The reason for switching modes lies in the fact that once in system mode, the active link
register is LR_sys. This would be stored in the stack before the subroutine is called. When
the subroutine is called, return address from the subroutine is saved in LR_sys. If a higher
priority interrupt does interrupt this subroutine then the LR_irq is affected but the return
address of the subroutine is still intact in the LR_sys.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 5 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
3.1 Steps for Nesting of Interrupts
The steps for writing the top level ISR in Assembly would be as follows:

1. Save the registers that would be used in the ISR along with SPSR_irq.
2. Clear the source of the interrupt.
3. Switch to system mode and re-enable interrupts.
4. Save the User mode link register (LR_sys) and non-callee saved registers.
5. Call the C interrupt handler function.
6. When the C interrupt handler function returns, restore User Mode registers and

disable interrupts.
7. Restore work registers and SPSR_irq.
8. Return from IRQ.

4. Code examples

This example uses Timer1 and External interrupt1 as IRQ interrupt sources. Timer1 has
higher priority than External Interrupt1. The application was built for the Keil
MCB2100/2130/2140 board. On the board, there are eight LEDs. There is also a push
button which is been interfaced to the External Interrupt1 pin. The LEDs are separated
into two groups. One set is dedicated to Timer1 and the other set is dedicated to External
Interrupt1.

The External Interrupt are configured as a level-triggered interrupt. Timer Match is
configured to reset the timer counter and interrupt the ARM7 core on a regular basis. In
the External Interrupt1 ISR, LED1,2,3 and 4 are blinked. In the Timer1 ISR, LEDs 5,6,7
and 8 are blinked. After Timer1 ISR is executed, LEDs 1,2,3 and 4 will start blinking again
(assumption- the push button is still pressed).

To see the code in action, keep the button interfaced to the External Interrupt 1 pin
pressed. LEDs 1,2,3 and 4 will keep on blinking. When the Timer match takes place, it will
interrupt the External Interrupt ISR and blink LEDs 5,6,7 and 8.

Two set of examples are provided:

1. Nested Interrupt Example (Top level ISR handler in Assembly).
2. Keil’s approach to Nested Interrupts. (Using Inline assembly within C code).

Both approaches are the same and they are provided here for completeness. The second
approach is more efficient since the user does have not have to deal with assembly files.

4.1 Nested interrupt example (top level handler in assembly)

4.1.1 Assembly code
This project has the following assembly files:
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 6 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
1. Startup assembly file (called Startup.s in Keil environment)- This file would have the
interrupt vector table and other basic startup code. This code is not present in this
application note. An example of this file can be found in the simple interrupt handling
application note available online or this file is present with the example projects
accompanied with Keil MicroVision3.

2. Top level ISR handler- The application can have separate files for each interrupt
source used or a single file can be used. If a single file is used then while clearing the
interrupt (Step 2 above), the application would have to check the VIC to get the
source of the interrupt. In this example, separate files were used. The sample code
provided below only shows the External Interrupt1 top level assembly file.

Top level ISR Handler:

// ***
VECTADDR EQU 0xFFFFF030
EXTINT EQU 0xE01FC140

// The following four lines of code are specific to the Keil Assembler
AREA ISRCODE,CODE
PUBLIC isr_ext?A
EXTERN CODE32 (ext?A)
isr_ext?A PROC CODE32

// Registers to be used in the ISR should be stacked along with SPSR_irq and LR_irq
STMFD SP!,{R0,R1,LR}
MRS R0,SPSR
STMFD SP!,{R0}

// Clear the source of the interrupt
MOV R1,#0x2
LDR R0,=EXTINT
STR R1,[R0]

// Move to System mode and re-enable interrupts
MSR cpsr_c,#0x1f

// Stack lr_sys and other register
STMFD SP!,{R0-R3,R12,LR}

// Branch to C function
BL ext?A

// Pop lr_sys and ATPCS registers
LDMFD SP!,{R0-R3,R12,LR}

// Move to IRQ and disable interrupts. For considering the scenario that an interrupt
// occurs while IRQ is disabled please refer the ARM FAQ online.
MSR cpsr_c,#0x92

// Update VIC
MOV R1,#0xff
LDR R0,=VECTADDR
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 7 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
STR R1,[R0]

// Pop registers,SPSR_irq,lr_irq
LDMFD SP!,{R0}
MSR SPSR_cf,R0
LDMFD SP!,{R0,R1,LR}

// Return
SUBS PC,R14,#0x04
ENDP
END

// ***

4.1.2 C code

#include <LPC21xx.H> /* LPC21xx definitions */

void Initialise(void);

//Functions defined as seperate assembly files
extern void isr_timer(void) __irq;
extern void isr_ext(void) __irq;

// C Functions called from the Top level assembly handler
void timer_ISR() __arm;
void ext()__arm;

int main (void)
{
int i=0,j;
Initialise();

 /* Start timer */
 T1TCR=0x1;

while (1)
{
}
}

// Basic Initialzation routine
void Initialise()
{
// LED’s are connected to P1.16..23
IODIR1 = 0xFF0000; /* P1.16..23 defined as Outputs */
IOCLR1 = 0xFF0000;

/* Initialize Timer 1 */
T1TCR=0x0;
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 8 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
T1TC=0x0;
T1PR=0x4;
T1PC=0x0;

/* End user has to fill in the match value*/
T1MR0=0x...;

/* Reset and interrupt on match */
T1MCR=0x3;

/* External interrupts setup as level-sensitive triggered. Some of the steps mentioned
here are taking into considertaion the EXTINT.2 Errata */
EXTINT=0x2;
VPBDIV=0x0;
EXTMODE=0x0;
VPBDIV=0x0;
EXTPOLAR=0x0;
VPBDIV=0x0;

/* Initialize VIC */
VICIntSelect=0x0; /* Timer 1 selected */
VICIntEnable= 0xf020; /* Timer 1 interrupt*/
VICVectCntl1=0x2f;
//isr_ext is defined in the assembly file. Shown in the assembly code above
VICVectAddr1=(unsigned long)isr_ext;
VICVectCntl0= 0x25;
//isr_timer is defined in the assembly file. Not shown in the assembly code above
VICVectAddr0=(unsigned long)isr_timer;
}

void timer_ISR() __arm
{
 int i,j;

// Blink LEDs 5,6,7,8 five times
 for (j=0;j<5;j++)
 {
 for(i=0;i<2000000;i++){}
 IOSET1 = 0x00F00000;
 for(i=0;i<2000000;i++){}
 IOCLR1 = 0x00F00000;
}
}

void ext()__arm
{
 int i,j;
 EXTINT=0x2;

for (j=0;j<3;j++){
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 9 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
for(i=0;i<2000000;i++){}
 IOSET1 = 0x000F0000;
for(i=0;i<2000000;i++){}
 IOCLR1 = 0x000F0000;
}
}

4.2 Keil’s approach of nesting interrupts
Keil’s approach implements two macros (with inline assembly code) that can be used in
the beginning and end of an ISR respectively as shown in the C code below. Changes in
the code below from the previous example are shown in bold.

4.2.1 C code

#include <LPC213x.H> /* LPC21xx definitions */

// Macro for enabling interrupts, moving to System mode and relevant stack operations

#define IENABLE /* Nested Interrupts Entry */ \
 __asm { MRS LR, SPSR } /* Copy SPSR_irq to LR */ \
 __asm { STMFD SP!, {LR} } /* Save SPSR_irq */ \
 __asm { MSR CPSR_c, #0x1F } /* Enable IRQ (Sys Mode) */ \
 __asm { STMFD SP!, {LR} } /* Save LR */ \

// Macro for disabling interrupts, switching back to IRQ and relevant stack operations

#define IDISABLE /* Nested Interrupts Exit */ \
 __asm { LDMFD SP!, {LR} } /* Restore LR */ \
 __asm { MSR CPSR_c, #0x92 } /* Disable IRQ (IRQ Mode) */ \
 __asm { LDMFD SP!, {LR} } /* Restore SPSR_irq to LR */ \
 __asm { MSR SPSR_cxsf, LR } /* Copy LR to SPSR_irq */ \

void Initialise(void);
// Timer and External Interrupt ISR
void timer_ISR() __irq;
void ext()__irq;

int main (void)
{
int i=0;
Initialise();

/* Start timer */
T1TCR=0x1;

while (1)
{ }
}

// Basic Initialzation routine
void Initialise()
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 10 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
{
// LEDs are connected to P1.16..23
IODIR1 = 0xFF0000;
IOCLR1 = 0xFF0000;

/* Initialize Timer 1 */
T1TCR=0x0;
T1TC=0x0;
T1PR=0x4;
T1PC=0x0;

/* End user has to fill in the match value*/
T1MR0=0x...;

/* Reset and interrupt on match */
T1MCR=0x3;

/* External interrupts setup as level-sensitive triggered. Some of the steps mentioned
here are taking into considertaion the EXTINT.2 Errata */
EXTINT=0x2;
VPBDIV=0x0;
EXTMODE=0x0;
VPBDIV=0x0;
EXTPOLAR=0x0;
VPBDIV=0x0;

/* Initialize VIC */
VICIntSelect=0x0;
VICIntEnable= 0xf020;
// Setting up VIC to handle the external interrupt. External Interrupt1 has priorty 1
VICVectCntl1=0x2f;
VICVectAddr1=(unsigned long)ext;

// Setting up Timer0 to handle the external interrupt. Timer0 has priorty 0
VICVectCntl0= 0x25; /* Address of the ISR */
VICVectAddr0=(unsigned long)timer_ISR;
}

// Timer1 ISR
void timer_ISR() __irq
{
 int i,j;

// Clear the Timer interrupt
 T1IR=0x1;

 IENABLE;

// Blink LEDs 5,6,7,8 five times
for (j=0;j<5;j++)
 {
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 11 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
 for(i=0;i<2000000;i++){}
 IOSET1 = 0x00F00000;
 for(i=0;i<2000000;i++){}
 IOCLR1 = 0x00F00000;
}
IDISABLE;

// Update the VIC
VICVectAddr =0xff;
}

//External Interrupt 1 ISR
void ext()__irq
{
int i,j;

// Clear External Interrupt1
EXTINT=0x2;

IENABLE;

// Blink LEDs 1,2,3 and 4
for (j=0;j<3;j++)
{
for(i=0;i<2000000;i++){}
IOSET1 = 0x000F0000;
for(i=0;i<2000000;i++){}
IOCLR1 = 0x000F0000;
}

IDISABLE;

// Update VIC
VICVectAddr =0xff;
}

5. References

1. ARM7TDMI-S Technical Reference Manual
2. ARM Developer Suite (v1.2) Developer Guide
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 12 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
6. Disclaimers

Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no

licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.

Application information — Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.

7. Trademarks

Notice — All referenced brands, product names, service names and
trademarks are the property of their respective owners.
 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 6 June 2005 13 of 14

Philips Semiconductors AN10381
Nesting of interrupts in the LPC2000
8. Contents

1 Introduction . 3
2 Interrupt handling overview 3
2.1 Interrupt levels in the ARM7 core 3
2.2 Vectored Interrupt Controller (VIC) 3
2.3 ARM7 core’s response to an IRQ/FIQ 3
2.4 Simple interrupt handling in the LPC2000 4
2.5 Compiler support for writing ISR’s 4
2.5.1 Problems with nesting of interrupts using compiler

keywords . 5
3 Nesting of interrupts . 5
3.1 Steps for Nesting of Interrupts 6
4 Code examples . 6
4.1 Nested interrupt example (top level handler in

assembly) . 6
4.1.1 Assembly code . 6
4.1.2 C code . 8
4.2 Keil’s approach of nesting interrupts. 10
4.2.1 C code . 10
5 References . 12
6 Disclaimers. 13
7 Trademarks. 13
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner. The information presented in this document does
not form part of any quotation or contract, is believed to be accurate and reliable and may
be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under
patent- or other industrial or intellectual property rights.

Date of release: 6 June 2005

Published in The Netherlands

	1. Introduction
	2. Interrupt handling overview
	2.1 Interrupt levels in the ARM7 core
	2.2 Vectored Interrupt Controller (VIC)
	2.3 ARM7 core’s response to an IRQ/FIQ
	2.4 Simple interrupt handling in the LPC2000
	2.5 Compiler support for writing ISR’s

	3. Nesting of interrupts
	3.1 Steps for Nesting of Interrupts

	4. Code examples
	4.1 Nested interrupt example (top level handler in assembly)
	4.2 Keil’s approach of nesting interrupts

	5. References
	6. Disclaimers
	7. Trademarks
	8. Contents

