

Using the CSE (Cryptographic Services

Engine) Module in MCAL4.3

by: NXP Semiconductors

1 Introduction

Today, people are concerned about sharing/transmitting

information in a secure and trusted manner between

parties in the automotive area. The security functions

implemented with Cryptographic Services Engine(CSE)

module are described in the Secure Hardware

Extension(SHE) functional specification.

This application note provides an introduction to the

CSE module on the MPC5777C and explains how to

configure and use this module in MCAL4.3. After

reading this application note, you should be able to:

• Understand the CSE configuration process in

MCAL4.3

• Understand how CSE module working on the

MPC5777C

The application note also provides examples for specific

configurations. The examples are provided in the

software package accompanying this document and is

also explained in detail. To aid in understanding of this

document and software package, you need to download

the MPC5777C reference manual from the NXP

website. The following table shows the abbreviations

used throughout the document.

NXP Semiconductors Document Number: AN 13061

Application Notes Rev. 0 , 12/2020

Contents

1 Introduction .. 1
3 CSE module on MPC5777C device 2

3.1 Chip-specific CSE information 2
3.2 Main features .. 2
3.3 Modes of operation ... 3
3.4 Block diagram ... 3

4 AES-128 encryption and decryption overview 5
4.1 Electronic Codebook (ECB) 5
4.2 Chiper-block chaining (CBC) 5
4.3 CMAC (Cipherbased Message Authentication

Code) 6
5 CRYPTO module in MCAL4.3 ... 7
6 CRYPTO loading key and processing primitive 11
7 References .. 12

2 CSE module on MPC5777C

This is my document title, Rev. 0, 12/2020

2 NXP Semiconductors

Table 1. Abbreviations and acronyms

Abbreviation Definition

CSE Cryptographic Services Engine

CSM Crypto Service Manager

CRYIF Crypto Interface

Crypto Crypto Driver

2 CSE module on MPC5777C

The Cryptographic Services Engine (CSE) is a peripheral module that implements the security functions

described in the Secure Hardware Extension (SHE) Functional Specification Version 1.1.

The CSE design includes a host interface with a set of memory mapped registers and a system bus

interface. The host interface are used by the CPU to issue commands. The system bus interface allows

the CSE to access system memory directly. Two dedicated blocks of system flash memory are used by

the CSE for secure key storage.

2.1 Chip-specific CSE information

This chip has one instance of the CSE module. The module:

• Executes the chip's secure boot process. See the System Boot details in the MPC5777C

Reference Manual.

• Exclusive access to the flash memory blocks mapped to the C55FMC_LOCK1 register,

PASS_LOCK1_PGn registers, and TDRn_LOCK1 DCF client. See C55FMC_LOCK1 register

bit mapping. The system MPU is automatically configured to prevent other bus masters from

interfering with CSE's access to the flash memory.

2.2 Features

The CSE has the following features:

• Secure storage for cryptographic keys

• AES-128 encryption and decryption

• AES-128 CMAC authentication

• True random number generation

• Secure boot mode

• System bus master interface

2 CSE module on MPC5777C

This is my document title, Rev. 0, 12/2020

NXP Semiconductors 3

2.3 Modes of operation

The CSE supports operation in Normal and Debug modes of operation. The use of the cryptographic

keys stored by the CSE is controlled based on the activation of the CPU debug port and the successful

completion of the secure boot process.

The CSE has a low-power mode that disables the clock to all logic except the host interface. Register

accesses are supported in this mode, but commands are not processed.

2.4 Block diagram

The CSE design includes a command processor, host interface, system bus interface, local memory,

AES logic, and True Random Number Generator (TRNG) as shown below.

A host interface (via the peripheral bridge) with a set of memory mapped registers that are used by the

CPU to issue commands. Furthermore, a system bus interface (via the crossbar interface) allows the

CSE to directly access system memory. Here the crypto module behaves like any other master on the

Crossbar switch (XBAR). Through the host interface, you can configure and control the CSE module,

like putting the module into low power mode, enabling interrupts for finished command processing, or

suspending command processing. A status and error register gives further system information. For a

complete list of CSE commands see MPC5777C reference manual.

Two dedicated blocks of system flash memory are used by the CSE for secure key and firmware storage.

These blocks are not accessible by other masters from the system. Therefore, they are called secure

flash. The command processing is done by a 32-bit CSE core with attached ROM and RAM running at

system frequency. After system boot, the core comes out of reset and executes boot code from the

module ROM. This code will load the firmware from the secure flash into the module RAM and start

executing from there. This reduces the flash accesses by the crypto core on the Crossbar. The AES block

is a slave to the crypto internal bus. It processes the encryption (plaintext → ciphertext) and decryption

(ciphertext → plaintext) and offers AES CMAC authentication. This application note deals only with the

authentication capabilities of the CSE.

2 CSE module on MPC5777C

This is my document title, Rev. 0, 12/2020

4 NXP Semiconductors

Figure 1. CSE block diagram on MPC5777C

3 AES-128 encryption and decryption overview

This is my document title, Rev. 0, 12/2020

NXP Semiconductors 5

3 AES-128 encryption and decryption overview

Block ciphers like the AES algorithm, working with a defined granularity, are often 64 bits or 128 bits.

The simplest way to encode data is to split the message in the cipher specific granularity. In this case,

the cipher output depends only on the key and input value. The drawback of this cipher mode, which is

called Electronic Code Book (ECB), is that the same input values will be decoded into the same output

values. This gives attackers the opportunity to use statistical analysis (for example, in a normal text

some letter combinations occur much more often than others).

To overcome this issue other cipher modes were developed like the Cipher-block chaining (CBC),

Cipher feedback (CFB), Output feedback (OFB) and Counter (CTR) mode.

The CSE module supports only the ECB and the CBC mode which are described in the following

sections.

3.1 Electronic Codebook (ECB)

Each block has no relationship with another block of the same message or information. The following

figure shows the block diagram of the ECB mode.

Figure 2. ECB block diagram

The following figure shows the drawback of the ECB mode. Taking the Freescale logo as an example it

is still visible in the encoded form using this mode. It is obvious that this is not very secure.

Figure 3. Encoding using ECB mode

3.2 Cipher-block chaining (CBC)

The Cipher-block (CBC) mode, invented in 1976, is one of the most important cipher modes. In this

mode the output of the last encoding step is xor’ed with the input block of the actual encoding step.

Because of this, an additional value for the first encoding step is necessary which is called initialization

vector (IV). Using this method each cipher block depends on the plaintext blocks processed up to that

point.

3 AES-128 encryption and decryption overview

This is my document title, Rev. 0, 12/2020

6 NXP Semiconductors

The following figure shows the block diagram of the CBC mode.

Figure 4. CBC block diagram

The following figure shows the encoding result of the Freescale logo using the CBC cipher mode. The

difference from the ECB mode is self-evident. In many applications ECB mode may not be appropriate.

Figure 5. Encoding using CBC mode

3.3 CMAC (Cipher-based Message Authentication Code)

A CMAC provides a method for authenticating messages and data. The CMAC algorithm accepts as

input a secret key and an arbitrary-length message to be authenticated, and outputs a CMAC. The

CMAC value protects both a message's data integrity as well as its authenticity, by allowing verifiers

(who also possess the secret key) to detect any change in the message content

Figure 6. CMAC Scheme

If you want more information about CSE functional description and CSE commands, see MPC5777C

reference manual.

CRYPTO module in MCAL4.3

This is my document title, Rev. 0, 12/2020

NXP Semiconductors 7

4 CRYPTO module in MCAL4.3

The following figure shows the location of Crypto Driver module in the micro controller abstraction

layer. It is below the Crypto Interface module and Crypto Service Manager module. It implements a

generic interface for synchronous and asynchronous cryptographic primitives. It also supports key

storage, key configuration, and key management for cryptographic services.

To provide cryptographic functionalities an ECU needs to integrate one unique Crypto Service Manager

module and one Crypto Interface. However, the Crypto interface can access several Crypto Drivers,

each of them is configured according to the underlying Crypto Driver Object.

Figure 7. AUTOSAR layered view with crypto module

A Crypto Driver Object represents an instance of independent crypto hardware “device” (e.g. AES

accelerator). There could be a channel for fast AES and CMAC calculations on a HSM for jobs with

high priority, which ends on a native AES calculation service in the Crypto Driver. But it is also possible

that a Crypto Driver Object is a piece of software, e.g. for RSA calculations where jobs are able to

encrypt, decrypt, sign or verify. The Crypto Driver Object is the endpoint of a crypto channel.

NOTE

Crypto have layers including Crypto Cryif and CSM, since CSM is always

a stub and only in order to avoid compiler error. The

job_configuration_structure is responsible by CSM, so the job structure

cannot generated by NXP CSM itself, as CSM is a stub in MCAL

perspective. Developers need to manually update the structure and passing

it to Crypto_Process_Job. So if need more CSM package support and

should contact the third party(i.e vector DaVinci).

CRYPTO module in MCAL4.3

This is my document title, Rev. 0, 12/2020

8 NXP Semiconductors

Figure 8 shows the relationship between different configuration items in EB:

Cryptoprimitives ->CryptoDriverObject->CryIfChannel->CsmQueue->CsmJobs

CryptokeyElement->CryptokeyType->Cryptokey->CryIfKey->CsmKeys

Crypto Driver Object: A Crypto Driver implements one or more Crypto Driver Objects. The Crypto

Driver Object can offer different crypto primitives in hardware or software. The Crypto Driver Objects

of one Crypto Driver are independent of each other. There is only one workspace for each Crypto Driver

Object (i.e. only one crypto primitive can be performed at the same time)

CryptoKeyElement: Key elements are used to store data. This data can be key material or the IV

needed for AES encryption. It can also be used to configure the behavior of the key management

functions.

CryptoKeyType: A key type consists of references to key elements. The key types are typically pre-

configured by the vendor of the Crypto Driver.

CryptoKey: A Key can be referenced by a job in the CSM. In the Crypto Driver, the key references a

specific key type.

CryptoPrimitive: A crypto primitive is an instance of a configured cryptographic algorithm realized in

a Crypto Driver Object.

Figure 8. Crypto configuration in EB

CRYPTO module in MCAL4.3

This is my document title, Rev. 0, 12/2020

NXP Semiconductors 9

CryIf: The crypto drivers are called by CryIf, the Crypto drivers access the underlying hardware and

software objects to calculate results with their cryptographic primitives. The results are forwarded to

CryIf.

CsmJob: A job is an instance of a job’s configured in cryptographic primitive. An operation of a crypto

primitive declares what part of the crypto primitive will be performed. There are three different

operation modes:

• START is a operation mode indicates a new request of a crypto primitive and will be cancel all

previous request of the same job and preemptive

• UPDATE mode indicates that the crypto primitive expects input data

• FINISH mode indicates that after this part all data are fed completely and the crypto primitive

can finalize the calculation

The priority of a job defines the importance of it. The higher the priority means more immediately the

job is executed. The priority of a cryptographic job is part of the configuration.

Figure 9. Cryif and CsmJobs in EB

 NOTE

The crypro driver does not have callback function in CryIf.c file, so it

should add SampleAppCrypto(job, result) into

CryIf_CallbackNotification(const Crypto_JobType* job, Std_ReturnType

result) function in CryIf.c file.

CRYPTO module in MCAL4.3

This is my document title, Rev. 0, 12/2020

10 NXP Semiconductors

As show in the following figure, this sample configure three primitives, ENCRYPT, RNG(random

number generated) and DECRYPT.

Figure 10. CryptoPrimitive configuration in EB

As show in the following figure, A CryptoKeyElement having the CryptoKeyElementId set to 1

represents a key material and cannot be set be using the field CryptoKeyElementInitValue. All the other

CryptoKeyElementIds can be set either using CryptoKeyElementSet function or the Tresos field

CryptoKeyElementInitValue.

Figure 11. CryptoKeyEelment configuration in EB

As show in the following figure, key elements and keys have to be configured for all primitives

supported in this release. Containers CryptoKeyElements, CryptoKeyTypes and CryptoKeys should be

activated or deactivated in Tresos in the same time. For a key it is mandatory to have a key type and

configured key elements. The index of the different key elements from the different Crypto services are

defined as in imported types table SWS_Csm_01022(in AUOTOSAR document Specification of Crypto

Service Manager)

A key has a state which is either 'valid' or 'invalid'. By default, all the keys are 'invalid' and have to be

set to valid by using the function Crypto_KeySetValid. If a key is in the invalid state then the Crypto

services which make use of the key returns CRYPTO_E_KEY_NOT_VALID value.

Figure 12. CryptoKey configuration in EB

CRYPTO loading key and processing primitive

This is my document title, Rev. 0, 12/2020

NXP Semiconductors 11

Because crypto driver not include CSM layer, so the Crypto_JobType structure should be initialized

manually in the code.

Figure 13. Csm in EB

5 CRYPTO loading key and processing primitive

To process a primitive (random number generation, MAC generation or verification, AES

encrypt/decrypt), the following sequence should be followed:

1. If keys are needed, the containers CryptoKeyElements, CryptoKeyTypes, CryptoKeys should be

enabled

2. Crypto_KeyElementSet(65536, CryptoKeyElementId_0, aes_test01_key, 16) meaning a key

material corresponding to key 65536 and having the size 16 bytes is configured

3. Call the API function Crypto_KeySetValid(65536) to enable key 65536

4. Call the API function Crypto_ProcessJob() to process job, it process three jobs(random

generated, encryption and decryption) in this sample code

Figure 14. Process job in sample code

6 References

This is my document title, Rev. 0, 12/2020

12 NXP Semiconductors

Call API function StringCompare ((uint8_t*)ucPlainText, ucDecText, 16) to verify the encryption and

decryption functionality.

Figure 15. Compare the ucPlainText and ucDecText

6 References

• MPC5777C Reference Manual (Document ID: MPC5777CPRM)

• Specification of Crypto Service Manager(Document link)

• Specification of Crypto Driver(Document link)

• AUTOSAR_MCAL_CRYPTO_IM

• AUTOSAR_MCAL_CRYPTO_UM

https://www.nxp.com/docs/en/reference-manual/MPC5777CRM.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_CryptoServiceManager.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_CryptoDriver.pdf

Document Number: AN 13061
Rev. 0

12/2020

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer's technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2020 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1 Introduction
	2 CSE module on MPC5777C
	2.1 Chip-specific CSE information
	2.2 Features
	2.3 Modes of operation
	2.4 Block diagram

	3 AES-128 encryption and decryption overview
	3.1 Electronic Codebook (ECB)
	3.2 Cipher-block chaining (CBC)
	3.3 CMAC (Cipher-based Message Authentication Code)

	4 CRYPTO module in MCAL4.3
	5 CRYPTO loading key and processing primitive
	6 References

