
1 Introduction
This application note introduces the porting of MicroPython, the packaging of
peripheral functions, and the adaptation of circuit boards, using the example
of our work on the i.MX RT1050/1060EVK development board. The code are
mainly written in C language, but are presented to the users as Python modules
and types. You can either evaluate and use MicroPython on this development
board, or use it to port and adapt your new board design. MicroPython’s native
project management and build environment is based on GCC and Make under
Linux. To facilitate the development habits of most MCU embedded engineers,
the development environment is also ported to Keil MDK5.

The readers are expected to have basic experience of development with KEIL
MDK, knowing what is CMSIS-Pack, the concept of target in KEIL and how to
switch between them.

2 Hardware platform

2.1 i.MX RT1050/60 crossover process
The i.MX RT1050/60 offered by NXP with single Arm® Cortex®-M7 core can
operate at the speed up to 600 MHz. It contains:

• 512 KB on-chip RAM, which can be flexibly configured as core Tightly-
Coupled Memory (TCM) or general-purpose RAM

• Additional dedicated 512 KB of OCRAM

• Various interfaces for connecting various external memories

• A wide range of serial communication interfaces, such as USB,
Ethernet, SDIO, CAN, UART, I2C, and SPI

• Rich audio and video features, including LCD display, basic 2D
graphics, camera interface, SPDIF and I2S audio interface

• Various modules for security, motor control, analog signal processing,
and power management

2.2 i.MX RT1050/60 EVK board
i.MX RT1050 EVKB/1060 EVKB board is a platform designed to show the most
commonly used features of the i.MX RT1050 processor. The EVK board offers
the below features:

• Memory: 256 Mbit SDRAM, 64 Mbit Quad SPI Flash, 512 Mbit Hyper Flash, TF Card Slot

• Communication interfaces: USB 2.0 OTG connector, USB 2.0 host connector, 10/100 Mbit/s Ethernet connector, CAN bus
connector

Contents

1 Introduction......................................1
2 Hardware platform...........................1
2.1 i.MX RT1050/60 crossover

process.. 1
2.2 i.MX RT1050/60 EVK board........ 1
3 Micropython.....................................2
3.1 Brief introduction to Python

Language.....................................2
3.2 Brief introduction to Micropython

...3
4 Building and running Micropython on

i.MX RT1050/1060 EVK.................. 3
4.1 Downloading source code........... 3
4.2 Opening project with KEIL and

build firmware...............................3
4.3 Preparing the file system............. 5
4.4 Downloading and running............ 5
5 Accessing Micropython file system on

PC... 7
6 Practicing Python development with

Micropython.....................................7
6.1 Programming with REPL..............8
6.2 Creating script in TF card and the

boot.py and the main.py............ 11
6.3 Accessing Micropython file system

with Python code....................... 11
7 Basic software resources in

Micropython...................................12
7.1 Key folders of Micropython........ 12
7.2 Micropython key built-in features

...12
8 Libraries in Micropython................ 13
8.1 Modules and types.....................13
8.2 Micro libraries.............................13
8.3 Libraries related to MCU and

board..13
9 Check and use the included libraries

in your Micropython system...........14
10 Using the garbage collector wisely

.. 16
11 Get more help................................17
12 References....................................17
13 Revision history.............................17

AN13242
Building Micropython with KEIL and Programming with Python on
i.MX RT1050/1060
Rev. 0 — 27 April, 2021 Application Note

https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-rt-series/i.mx-rt1050-crossover-processor-with-arm-cortex-m7-core:i.MX-RT1050
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applications-processors/i.mx-rt-series/i.mx-rt1050-evaluation-kit:MIMXRT1050-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/mimxrt1060-evk-i-mx-rt1060-evaluation-kit:MIMXRT1060-EVK

• Multimedia interfaces: CMOS sensor connector, LCD connector

• Audio interfaces: 3.5 mm stereo headphone hack, board-mounted microphone, SPDIF connector (not mounted by default)

• Debug interfaces: On-board debug adapter with DAP-Link, JTAG 20-pin connector

• Arduino interface

• User button and LEDs

Figure 1 is a photograph of i.MX RT1050 EVKB.

Figure 1. i.MX RT1050 EVKB

3 Micropython

3.1 Brief introduction to Python Language
Python is very friendly to beginner. The learning curve starts with almost zero slope and even teenagers with no computer
knowledge can get up to speed. In addition, Python is expressive, with one line of code often superior to multiple lines of C. Python
also provides common container data structures, such as linear tables, dictionaries (hash tables), collections, arrays, etc., and
related manipulation functions. Variables in Python are objects, and the use of variables is almost always by address reference.
Therefore, the contents contained in them can be vividly thought of as void*, which makes the heterogeneous and nested have
natural support and is good at expressing the dynamic data structure that changes during runtime. Of course, the Python runtime
environment knows their actual types. On top of that, the arguments and return values of Python functions are very flexible,
completely reversing the machine-oriented philosophy of C, making the Python API seem very concise and simple, but also very
easy to use and powerful.

Python's support for strings, large integer operations, and especially strings is a leap from the Stone Age to the Information Age
compared to C. A common saying among programmers, Life is short, I use Python, is to emphasize that Python makes it easy
to program efficiently and to get to the point without having to deal with much underlying details of the computer. The current
mainstream version of Python is 3.x.

Of course, these benefits of Python are not free, but rather a way to build a programmer's easier life on a CPU’s heavier load. This
makes using pure Python code on a computer inefficient, and sacrifice real-time capabilities. As a result, it is often Python that
provides the API while the underlying work is done with more efficient libraries such as C/C++.

NXP Semiconductors
Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 2 / 18

3.2 Brief introduction to Micropython
Don't be misled by the micro in the name MicroPython. For a Micro Controller Unit (MCU), when the two micros cancel each other
out, it's still a large software project with tens of thousands of lines of source code.

MicroPython is alternate implementation of Python 3.6 that supports all the common Python syntax. MicroPython is also a compact
version of Python. It is designed to run on a microcontroller with limited performance, such as a single chip MCU. The minimum
code size is less than 256 K and the runtime requires only 16 K of memory. The poor configurations can only run the simplest
scripts. For a more fully functional configuration, 512 KB Flash and 64 KB RAM are recommended, or greater. For the i.MX RT
series, resources have far richer.

In a dynamic language like Python, program code is often called scripts.

 NOTE

Micropython tailors most of the standard library to accommodate embedded MCUs, keeping only a few modules such as math and
some functions and classes for sys module. In addition, many standard modules, such as JSON and RE, have become uJSON
and uRE, which begin with u, representing the stripped down version of standard libraries for MicroPython development. Currently,
Micropython can run on a large number of ARM-based embedded systems, in addition to the PyBoard microcontrollers originally
developed. In this article, we introduced the porting of Micropython to NXP i.MX RT1050/1060 and changed the development
environment from the official GCC+Make to the Keil MDK 5.

The micro in MicroPython makes it easy to think that it's just reducing functionality on Python. In fact, it has also added new
features for use on the MCU. For example, on MicroPython, the performance and real-time requirements can still be programmed
in C, and the interface bound to Python can be exported, generally achieving a balance of ease of use and serious development.
MicroPython itself also supports more efficient and lower-level operations in the MCU with a number of special extensions and
modules, including the innovative native support and viper support that do not use dynamic memory for performance. A set of
“Pandora box” like modules, mem8/16/32 modules provide way to directly access the 4GB memory address; Micropython also
support inline assembly in Python scripts.

Micropython official website is http://www.micropython.org/. Micropython code is open source with the friendly MIT license and
the repository is located at https://github.com/micropython/micropython.

4 Building and running Micropython on i.MX RT1050/1060 EVK

4.1 Downloading source code

4.1.1 Downloading the specific version
Download the source code (zip) from micropython-rocky and unzip it. We strongly recommend to download the version with the
an_mpy1050_rev1 tag, as described in this application note.

4.1.2 git clone
Open a command window, navigate to the directory you want to put in, and then execute the command.

git clone https://github.com/RockySong/micropython-rocky.git

By default, clone the omv_initial_integrate branch. To get exactly the same result, check out to an_mpy_rt1050_60.

When meeting any issue with latest codes, switch to the an_mpy1050_rev1 tag.

 NOTE

4.2 Opening project with KEIL and build firmware
Based on an_mpy1050_rev1 version, locate the \ports\prj_keil_rt1060\ mpyrt1060.uvprojx and open it with KEIL 5.0 or above.

NXP Semiconductors
Building and running Micropython on i.MX RT1050/1060 EVK

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 3 / 18

http://www.micropython.org/
https://github.com/micropython/micropython
https://github.com/RockySong/micropython-rocky/releases/tag/an_mpy1050_rev1
https://github.com/RockySong/micropython-rocky.git

This project requires NXP.MIMXRT1062_DFP.12.1.0 and it is a CMSIS pack.

 NOTE

This project has multiple targets as shown in Figure 2.

Figure 2. Multiple targets

Select the target with the pybonly keyword, which means contains MicroPython only, not OpenMV main functionality.
There are two: one is debugged in SDRAM and the other is debugged in QSPI Flash. Because debugging in SDRAM is
the most convenient, it is generally recommended to choose debugging in SDRAM. Whichever option you choose, click

 or press F7 to generate the entire project.

If you get error messages shown in Figure 3, it means the specified AC5 compiler version is not found.

Figure 3. Error message

In this case, click

or press Alt+F7, and the Options of Targets dialog appears. Switch to the Target tab. In the Code Generation frame, select the
Use default compiler 5 in the ARM Compiler combo box.

NXP Semiconductors
Building and running Micropython on i.MX RT1050/1060 EVK

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 4 / 18

Figure 4. Options for Target

4.3 Preparing the file system
Under MicroPython, the concept of a file system is extremely important, and all Python scripts are stored on the file system. In
our port, both the file system on the TF/microSD card and the file system in the program Flash are supported. During startup, the
system first checks whether the TF card is inserted, and if so, mounts the TF card into the root file system. If not, then mount a
block of approximately 2 MB of space allocated from QSPI Flash as the file system. If it is used for the first time, the system will
automatically format this area in the QSPI Flash.

The Flash file system makes it possible to run MicroPython without a TF card. However, its write performance is extremely
poor (around 10KB/s) and it does not include wear balance. It is generally recommended to place only files that do not change
frequently, such as configuration files, debugged scripts, and so on, into Flash file system. In addition, when writing data to the
Flash file system, turn off the interrupt, affecting real-time response. Therefore, it is highly recommended to insert a TF card
formatted using FAT/FAT32 on the board.

The below describes the way to access the file system.

4.4 Downloading and running
1. Determine which debugger you are using. i.MX RT1060evk has an on-board CMSIS-DAP compatible debugger, but due

to the large firmware generated by this project, the download with CMSIS-DAP is slow. J-Link can also be used. On
the 1060EVK, to use J-Link, disconnect J47 and J48 or shortcut them if you use the onboard CMSIS-DAP compatible
debugger. Under Keil, J-Link downloads far faster than the on-board CMSIS-DAP. As the firmware has grown several times
since the inclusion of OpenMV, it can save lots of time to download it using J-Link.

If J-Link is used, download it to SDRAM, click the Reset button again before executing the program. Otherwise you
may accidentally enter a hard fault.

 NOTE

2. Connect the i.MX RT1060evk as shown in Figure 5.

NXP Semiconductors
Building and running Micropython on i.MX RT1050/1060 EVK

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 5 / 18

Figure 5. Connecting i.MX RT1060 EVK

3. Open a serial port terminal, such as TeraTM, to connect to the virtual serial port presented by the development board's
on-board debugger, with the baud rate set to 115200.

4. If debugging in SDRAM, click

or press Ctrl-F5 after building. Press F5 to run at full speed when the program enters the debugging interface
after downloading.

5. Switch to the serial terminal, wait for a moment, and a small number of boot messages appear. Enter the >>> prompt and
try print (' Hello MicroPython!), as shown in Figure 6.

NXP Semiconductors
Building and running Micropython on i.MX RT1050/1060 EVK

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 6 / 18

Figure 6. Boot message

Now, MicroPython is ready in this interactive development environment. It is called REPL. Python on the PC can also be used at
the command line in a similar way, which is the simplest form of programming in Python.

5 Accessing Micropython file system on PC
The Access to the MicroPython file system from the PC is extremely important because of the lack of a good Python editor on
MicroPython. We often write Python code on a PC using our favorite editor. The written code needs to be downloaded to the
MicroPython file system. For this, we implemented the USB mass storage device class ine the port, and presented the file system
in the form of a USB flash drive.

To access the contents of the file system on your PC, connect to the computer on a USB port near the Ethernet port, which will
present a removable disk on the computer.

• When no TF card is inserted, the contents of the Flash file system are displayed on the removable disk;

• When the TF card is inserted, the contents of the TF card are displayed on the removable disk.

When accessing the Flash file system, the write speed is only about 10KB/s. When accessing the TF card, the general read and
write speed is about 10MB/s.

Do NOT put a directory named flash (case sensitive) in your TF card. This will cause your Python script still
accessing the Flash file system when accessing /flash, while seeing the contents of the TF card on your PC in /flash.

 NOTE

6 Practicing Python development with Micropython
We've had our first taste of MicroPython programming on the REPL since typing Hello MicroPython in Downloading and running.
Similar to the experience on the PC, this interactive approach is great for getting started quickly, or trying out a new feature or
even a short piece of software. However, it is difficult to write large Python scripts this way. Fortunately, there are many ways to
develop, deploy, and execute Python scripts in MicroPython. Figure 7 summarizes three ways:

• Load the script from a file

• Real-time execution from an interactive terminal (as we’ve seen)

• Cross-compiling and statically link of generated bytecode into firmware

NXP Semiconductors
Accessing Micropython file system on PC

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 7 / 18

Figure 7. Practice Python development with Micropython

One path on the left is to load the script from the file system and generate the bytecode by the MicroPython loader and compiler
and submit it to the core virtual machine. The file system can be on a TF card or in the program Flash.

Taking the middle two paths, the rest of the steps are similar to those taken from the file system. Although you can either use the
MCU's USB virtual serial port or the MCU's UART via the virtual serial port of the onboard debugger, respectively, fetch Python
lines or segments from the REPL component.

Executing from the file system and from the REPL is the focus of the rest of this application note.

Here is also a brief introduction to the right side of the road, which is closer to the C language project development habits. We need
to compile Python code into bytecode that MicroPython's virtual machine can interpret using MicroPython's cross-compiler on the
host PC, a program called mpy-cross. The bytecode is encapsulated into a special executable object, serialized into C source
code, placed into a MicroPython project, and compiled and linked with other source code.

In this way, the MicroPython compiler can be cropped out of the firmware, saving a small amount of Flash space. However, since
this approach sacrifices the convenience of running different code quickly, it is not the purpose of our port, so we won't dig deeper
here. Some MicroPython-based variants, such as Micro:bit, uses this approach. It builds your firmware in its server side and lets
you download the generated firmware with your browser.

6.1 Programming with REPL
The most straightforward way to get started with MicroPython is through the REPL, which is very similar to typing line by line
commands in a command-line interface, such as print(' Hello MicroPython!'). However, the REPL is more than a simple command
interpreter. It is more like typing a script line by line and executing it immediately after each line is typed. The results of previously
executed scripts can be used later.

Besides the line-by-line input and script execution, the below lists important features of the REPL

6.1.1 Breaking a running script
REPL supports breaking a running script with the Ctrl-C key, as shown in Figure 8.

NXP Semiconductors
Practicing Python development with Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 8 / 18

Figure 8. Breaking a running script

As shown in Figure 8, the KeyboardInterrupt explains why the script is being broken. The KeyboardInterrupt exception has
occurred. At implementation time, the exception is raised in the serial port interrupt service routine and detected by the
MicroPython VM.

6.1.2 Multi-line script input in REPL
Under REPL, when a line ends with :, the REPL does not directly execute the line, but automatically indents it and allows manual
input of the script that follows. After that, manually adjust the indentation level based on the program syntax and semantics. When
the indentation level is 0, the REPL assumes that a script has been typed and executes it together.

However, it is not convenient to manually enter multiline scripts directly under the REPL in this way. In addition, if you have a
multiline script with indent level 0, you cannot enter multiple lines as a whole. To do this, the REPL provides a paste mode.

1. Press Ctrl-E on a blank line in the REPL to enter the paste mode.

Figure 9. Entering paste mode

2. Copy a pre-edited script, such as：

Figure 10. Editing multiple lines of python script on PC

def fib_sum(n):
 s = 2
 s0 = 1
 for i in range(2, n):
 tmp = s0 + s

NXP Semiconductors
Practicing Python development with Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 9 / 18

 s0 = s
 s = tmp
 return s
print('Fibonacci to 10 = %d' % fib_sum(10))

3. Paste it to REPL within the terminal (usually the hot key is the right mouse button), for example:

Figure 11. Using paste mode of REPL

4. Click OK and the copied script snippet is pasted.

5. Press Ctrl-D to finish multi-line script input, and the script will be carried out, for example:

NXP Semiconductors
Practicing Python development with Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 10 / 18

Figure 12. Running pasted script under REPL

6.2 Creating script in TF card and the boot.py and the main.py
While it is convenient and intuitive to use MicroPython directly on an interactive terminal, it is not easy to develop scripts with many
lines of code or store them in files for repeated use. In fact, the real MicroPython-based project development is basically organized
programs by files, which is the same as the traditional use of C language to develop embedded applications.

C programs start from main, and the entire firmware must be in a specified location and conform to a specific format in order to
start successfully. How about in MicroPython?

Under MicroPython, the porting code somehow plays the role of god: the startup sequence can actually be designed by the port
itself. But by convention, during startup, scan the root directory to find boot.py first and then main.py, load the startup code, and
execute each of them as soon as one is found. Both files are optional and the runtime just silently skip one if it is not found. During
our porting, we also followed this startup sequence.

6.2.1 boot.py
Where, boot.py, as the name implies, is executed during boot, acting as a boot script. For example, the boot.py script can read
the state of keypads, jumpers, and dialed switches to read some configurations, such as what device the USB is on. At the time
of execution of boot.py, most peripherals and software modules are not yet initialized, so boot.py can do little. Thus, if you do not
have a custom boot process, you generally do not need boot.py.

6.2.2 main.py
The real entry point to keep in mind is main.py.

Main.py, as the name suggests, is like the main function in C, which runs the main business logic of the user program. main.py
is automatically executed after all necessary initializations in the MicroPython system have been completed.

In addition, as on a PC, you can split the entire program functionality over multiple Python source files and place them in the
root directory of a TF card. For other xxx.py files, they can be used in main.py by import xxx. These files can also be drivers or
middleware developed in Python. Of course, they must also be executable by MicroPython.

6.3 Accessing Micropython file system with Python code
Access to the MicroPython file system is much the same as on a PC, using either the OS module or the open(path, [mode])
function. In the MicroPython port corresponding to this application note, the contents of the TF card are loaded into the root
directory / if there is a TF card. Otherwise the root directory is the virtual file system, and there is a subdirectory called /flash that
represents the mount point of the QSPI Flash file system.

NXP Semiconductors
Practicing Python development with Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 11 / 18

Whether or not a TF card is inserted, the QSPI Flash file system is mounted as /flash and can be browsed on the REPL with the
following commands:

import os
os.listdir(‘/flash’)

To access the contents of a file, use the open built-in function in a Python script to return the file object, and then use the read,
write, seek, and other methods, just as using Python on a PC.

Do not place a folder named flash (case sensitive) in the root directory of the TF card. Otherwise it will be obscured
by the internal QSPI flash file system.

 NOTE

7 Basic software resources in Micropython
After some first experiences of Micropython, let’s dive deeper.

7.1 Key folders of Micropython
It's best to learn something new from the surface to inside. So, let's start with a brief introduction to MicroPython's top-level
directory partitioning. The directory structure of the MicroPython source code gives you an intuitive idea of how it functions and
is organized. Below we highlight some key directories of Micropython source tree.

• py: This is the core of MicroPython and is responsible for the running of Python programs. It includes the compiler,
Micropython bytecode generator, bytecode loader, virtual machine, dynamic memory manager with garbage collection
support, built-in modules and classes, and more.

• ports: Ports of Micropython on multiple hardware/software platforms. Micropython can run on arm, RISC-V, xtensa, x86,
either by bare metal on an operating system such as Windows, Linux, Zephyr, FreeRTOS.

• drivers: Off-chip peripheral drivers are usually the chips soldered on the same PCB of the main CPU. These drivers can
be written in either C or Python.

• extmod: There are many non-builtin Micropython modules. Some of them, such as the vfs module, are often used in all
ports.

• lib: Low level code in C that used by multiple Micropython modules.

• mpy-cross: A PC tool to cross compile Micropython source code to bytecode and encapsulate it into files. Bytecode can
then be linked into firmware and burned to flash, and directly loaded by Micropython VM, without compiling on device.
Micropython comes with the Makefile of mpy-cross for Linux.

7.2 Micropython key built-in features
When you're learning a language, once you understand its basic syntax, you shall get familiar with the key built-in features that
programmers typically use the most. Below are some Micropython key built-in features.

• Built-in functions and exceptions: Similar to standard C Python, some of most frequently used are:

— print, len, range, enumerate, open, dir, str, int; type, isinstance, sorted, zip, sum, chr, ord, hex, oct, bin, min, max,
sum, map; iter, next; input

• Heap manager with arbage collection (gc)

— Scans the potential memory blocks that are still in use, by (recursively) recognizing pointers to them from the call
stack and a statically planned root pointer list, while frees other memory blocks.

— Methods: enable, disable, collect, mem_alloc, mem_free, threshold

• Math library for real number and complex number

• Other micro libraries: uarray, ubinascii, ucollections, uhashlib, uos, ...

NXP Semiconductors
Basic software resources in Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 12 / 18

https://github.com/micropython/micropython/tree/master/py
https://github.com/micropython/micropython/tree/master/ports
https://github.com/micropython/micropython/tree/master/drivers
https://github.com/micropython/micropython/tree/master/extmod
https://github.com/micropython/micropython/tree/master/lib
https://github.com/micropython/micropython/tree/master/mpy-cross
https://docs.openmv.io/library/builtins.html
https://docs.openmv.io/library/builtins.html
https://docs.openmv.io/library/math.html
https://docs.openmv.io/library/cmath.html

8 Libraries in Micropython
A considerable portion of learning a language is being familiar with its libraries. The more advanced the language, the more
important it is to learn the library. C language library is relatively thin, C++ library is much richer. With Python, the language itself
is very easy to get started with, and understanding and working with various libraries is even more important. The below is a
brief introduction.

8.1 Modules and types
MicroPython libraries generally take one of two forms:

1. modules: Use by import <module_name>. Once a module is imported, you can use the methods and types within it.
Methods in a module are just like functions and they do not have associated object instances. In some languages,
method in modules are called static methods.

2. types: Types are included in modules. They act as classes in object-oriented languages, and encapsulate both data and
operations as methods. In C, they are the structs and all functions that can work with them. To use a type, instantiate
the type and get an object of that type, and then call methods on that object with the popular object.method() manner.

8.2 Micro libraries
As a compact implementation of Python 3, MicroPython also comes with commonly used Python libraries, most of which have
been condensed into tiny libraries. The micro libraries begin with a u and implements only a subset of the functionality of the
corresponding CPython modules. Table 1 lists some commonly-used modules.

Table 1. Frequently used compact standard libraries in Micropython

Name Usage

Built-in functions and exceptions Use directly without the need of import

math, cmath math libraries of real number and complex number

gc Garbage collector

uarray Array

uos Micro os module

uio Input stream and output stream

ustruct Packing and unpacking of binary data blocks

sys/usys System specific functions, including stdio

ujson JSON encoding and decoding

ure Regular Expression engine

uzlib Zip uncompressing library

8.3 Libraries related to MCU and board
In MicroPython, the resources on the MCU and the circuit board are typically encapsulated through Python modules and objects
created by Python modules. There are two manners of encapsulations:

NXP Semiconductors
Libraries in Micropython

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 13 / 18

8.3.1 Peripheral oriented manner
This is also the most straightforward encapsulation manner, as if it were the basic SDK used by Python to drive common
peripherals. If you want to use Python modules and objects that are encapsulated in this way, then you need a basic understanding
of the corresponding peripheral classes. For example, ADC, I2C, UART, SPI, and so on, their names are usually the same
as the peripherals. Most of these functions are packaged in the pyb module and machine module. It is worth mentioning that,
compared with the fundamental library in C (SDK) provided by NXP, these same peripheral-oriented modules only provide a
subset of the most commonly used functions, not as complete as the SDK. They contains neither rare features nor much of a
direct-to-register API.

Interestingly, however, some subset of functionality is not necessarily included by peripherals. For example, the scan method of
the I2C class is used to use the I2C peripheral as the host and scan all connected I2C devices on the I2C bus. In general, the
registers of a peripheral do not provide such advanced functionality directly. Moreover, in the C language, for such an API, it is not
convenient to use a simple type as the return value, and it is likely to require manual allocation of dynamic memory and cleanup.
However, under MicroPython, you simply return a list or tuple, with no concern about how long it should live, where the memory
is, or how it is freed. This adds a great deal of flexibility to the design of the API under MicroPython.

8.3.2 Use case oriented manner
For libraries written in mind of use case oriented manner, they are more straightforward to specific use cases than peripheral-
oriented APIs. For example, the LED type directly provides the basic LED control API but the underlying implementation is
automatically using GPIO and PWM (for brightness dimming). They often provide methods that are more convenient for specific
application scenarios.

There are some simple features, such as the PIN type, which encapsulates the functionality of GPIO and has the characteristics
of both.

8.3.3 Machine module and pyb module
In the MicroPython port described in this document, there are two modules that encapsulate the capabilities of hardware resources
on the chip and on the development board:

1. machine module: System-level basic operations and information, such as check the main frequency, sleep control,
and even root level operations such as reset and direct read and write to 4 GB address space. More power, more
responsibilities: Improper usage of them can break the normal operation of the whole system.

2. pyb module: This module encapsulates the functions of most of the popular MCU peripherals. Some of the most basic
and common functions are also included in the machine module, such as the UART type and the freq() function.

The machine module and the pyb module first appeared in the PyBoard development board created by the original MicroPython
authors. This port also mimics their use to encapsulate common MCU functions in the i.MX RT1050/1060 series processors.

9 Check and use the included libraries in your Micropython system
The MicroPython system is highly customizable, where the customized libraries can be added during porting. To see modules
included in the MicroPython system you are using, type the following command in the REPL

help('modules')

For example, a Micropython system we configured on the i.MX RT1050/1060evk contains the following modules:

NXP Semiconductors
Check and use the included libraries in your Micropython system

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 14 / 18

Figure 13. Checking the built-in modules in a running Micropython system

A large number of MicroPython mini-libraries begin with u.

To see the methods and types in the module, import the module and use the dir built-in function. Under MicroPython, for <module
name>. Press the Tab key, and the REPL will automatically pop the available methods, types, and constants (A special type). For
example, Figure 14 shows how to check out what is inside the pyb module.

Figure 14. Populating contents of a module with Tab key

The pyb module encapsulates common functions of the MCU, which mimics the way MicroPython encapsulates MCU functions on
its official PyBoard products. As show in Figure 14, the pyb module contains many members. In general, lowercase is the method
in the module and uppercase is the type or constant in the module. Use Python's built-in type() function to see what's behind each
name. For example, freq is a function type (class function).

Figure 15. Getting the type of a member

After being invoked, it returns the 4-element tuple of the frequencies, in MHz, of four most important system clocks (Oscillator,
CPU, AHB, Peripheral).

Similarly, UART is a type.

NXP Semiconductors
Check and use the included libraries in your Micropython system

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 15 / 18

Figure 16. UART

UART is the encapsulation type for the basic functions of UART under the pyb module. You can create an instance of this type
and call its methods, for example:

Figure 17. Creating an object and invoking its method

As shown in Figure 17, an object instance of type UART is created with pyb.uart (1, baudrate=115200) using the LPUART
peripheral # 1, with baudrate set to 115200, and referenced by name u1. Input u1.<TAB key>, and after that, the REPL
automatically lists the methods supported by the UART type. For example, use the write method to write a string with UART.

After the u1.write(' hello ') command is typed, hello5 is printed because strings in MicroPython also record the length of the string
at the end, rather than ending in zero as in C. UART1 happens to be the UART used by the REPL on the 1060EVK, so its output
can be captured and displayed by the REPL.

10 Using the garbage collector wisely
Once getting a basic knowledge of MicroPython, you need to learn a little more about garbage collection, which is the exact
opposite of the memory management philosophy of programming in C - trust the programmers vs. don't trust the programmers!

In C, we have to manage memory ourselves, knowing the difference between static memory, stack memory, and heap memory,
and how variables, especially pointer variables, are placed and scoped. In particular, dynamic memory obtained through malloc
must be carefully managed for its lifetime and the number of Pointers, which can lead to hidden bugs. This is also the result
of C's trust the programmer philosophy: while we enjoy the supreme power of memory use, we also have the responsibility of
micromanaging memory. One of the most common annoyances is to pair each malloc with a free.

In Python, these rights and obligations are taken back. When using any Python objects, don't manually allocate and free their
memory. The Python language runtime takes over, and so does in MicroPython. If you use Python just to make a computer system
to work for you in a programmable manner, this way is undoubtedly a great liberation: to be a system programmer is no longer
the prerequisite for being a Python programmer we can focus on our applications to solve the problem, and need not get bored
by the tedious and error prone details of memory management.

In fact, objects in Python are still allocated from the heap memory, and the heap manager also has malloc and free methods.
However, the key difference is, the heap manager in Micropython also keeps tracking other clues about which blocks of memory
it is managing are still in use at any given moment, and automatically calls free for blocks not in use.

This feature, known in MicroPython as a Garbage Collector (GC), is basically a block-based allocator with fixed size, except that
it can allocate multiple contiguous blocks once at a time. The length of a block is a power of 2, typically 16 bytes or more. GC uses
a 2-bit bitmap array to track the allocation of individual blocks. When the GC finds that there is no available memory to allocate,
it starts the garbage collection operation. The GC scans the script's stack and current registers, as well as a special root pointer
list, for any 32-bit variables that can be read as Pointers and point to its own allocated memory. Whenever it is found, all chunks of
this memory are marked as non-garbage it also scans the contents of all non-garbage blocks of memory, in 4-byte aligned units,
and treats them all as potential Pointers. Whenever any potential pointer is found pointing to a piece of memory that you have
allocated, the GC considers that piece of memory to be non-garbage too. This operation is performed recursively. This is similar

NXP Semiconductors
Using the garbage collector wisely

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 16 / 18

to filtering COVID-19 infected people and their close contacts, and close contacts of close contacts recursively. Finally, blocks of
memory that are unrelated to the non-garbage memory are treated as garbage and are disposed of free.

Analyzing the above process, we can see that the recursive process is very uncertain in time consumption. If the GC manages a
large amount of memory, blocks are small in granularity, and Python programs use many variables with interlocking references,
this recursive screening can consume a lot of time, even more than 100,000 CPU cycles! During garbage collecting, the script
is suspended. Therefore, for most hard real-time control systems, it is not possible to accept this worst-case response delay. In
practice, to make MicroPython-based systems capable of more real-time applications, implement real-time tasks in the underlying
C language and manager their memory manually.

Even at the Python level, there are ways to minimize the uncertainty of garbage picking. The GC binds some key functions to
a Python module called gc. It has an important method called collect(). When writing a Python script, if you realize that your
script will quickly produce and consume large chunks of memory, that is, quickly creating memory garbage -- you can insert some
gc.collect() calls appropriately to clean up more frequently to avoid spending a lot of time cleaning up after the garbage piles up.
The cost is the efficiency reduction of garbage collection, that is, reducing uncertainty at the expense of overall performance.

11 Get more help
Besides the built-in help() commands mentioned above, Micropython official website has a very complete documentation
system, located at MicroPython documentation. It includes comprehensive information about Micropython and its related
resources, such as an introduction to the MicroPython language itself, libraries, and some of the features of the
development boards.

12 References
Following documents may offer further reference.

• MicroPython

• MicroPython libraries

• micropython

• micropython-rocky

13 Revision history

Revision number Date Substantive changes

0 27 April, 2021 Initial release

NXP Semiconductors
Get more help

Building Micropython with KEIL and Programming with Python on i.MX RT1050/1060, Rev. 0, 27 April, 2021
Application Note 17 / 18

http://docs.micropython.org/en/latest/index.html
http://www.micropython.org
http://docs.micropython.org/en/latest/library/index.html
https://github.com/micropython/micropython
https://github.com/RockySong/micropython-rocky/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 April, 2021
Document identifier: AN13242

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Hardware platform
	2.1 i.MX RT1050/60 crossover process
	2.2 i.MX RT1050/60 EVK board

	3 Micropython
	3.1 Brief introduction to Python Language
	3.2 Brief introduction to Micropython

	4 Building and running Micropython on i.MX RT1050/1060 EVK
	4.1 Downloading source code
	4.1.1 Downloading the specific version
	4.1.2 git clone

	4.2 Opening project with KEIL and build firmware
	4.3 Preparing the file system
	4.4 Downloading and running

	5 Accessing Micropython file system on PC
	6 Practicing Python development with Micropython
	6.1 Programming with REPL
	6.1.1 Breaking a running script
	6.1.2 Multi-line script input in REPL

	6.2 Creating script in TF card and the boot.py and the main.py
	6.2.1 boot.py
	6.2.2 main.py

	6.3 Accessing Micropython file system with Python code

	7 Basic software resources in Micropython
	7.1 Key folders of Micropython
	7.2 Micropython key built-in features

	8 Libraries in Micropython
	8.1 Modules and types
	8.2 Micro libraries
	8.3 Libraries related to MCU and board
	8.3.1 Peripheral oriented manner
	8.3.2 Use case oriented manner
	8.3.3 Machine module and pyb module

	9 Check and use the included libraries in your Micropython system
	10 Using the garbage collector wisely
	11 Get more help
	12 References
	13 Revision history

