
AN13948
Integrating LVGL GUI Application into Smart HMI Platform
Rev. 1 — 16 June 2023 Application note

Document Information
Information Content

Keywords AN13948, LVGL, smart HMI, GUI Guider

Abstract This application note describes how to integrate the LVGL GUI application developed by the user
into the smart HMI software platform based on the framework.

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

1 Introduction

NXP has launched a solution development kit named SLN-TLHMI-IOT. It focuses on smart HMI applications
containing two apps - coffee machine and elevator (smart panel app is coming soon). To provide information
to the user, some basic documents are included, for example, the developer guide. The guide introduces the
basic software design and architecture of the applications covering all solution components. These components
include bootloader, framework, and HAL design to help the developers more easily and efficiently implement
their applications using the SLN-TLHMI-IOT.

For more details about the documents and the solution, visit NXP EdgeReady Smart HMI Solution based on
i.MX RT117H with ML Vision, Voice and Graphical UI.

However, the introduction focuses on the ideas and basic usage. Because of the compliance of the software
based on the framework, it is still not easy for the developers to know how to implement their applications. To
speed up the development, additional guides are required to introduce how to implement the major components
(for example, LVGL GUI, vision, and voice recognition) step by step. For example, customers should have their
own LVGL GUI application different from the present apps in the solution. After implementing their LVGL GUI
with the GUI Guider provided by NXP, they must integrate it into the smart HMI software platform based on the
framework.

This application note describes how to integrate the LVGL GUI application developed by the user into the
smart HMI software platform based on the framework. The reference codes are also presented along with this
application note.

Note: This application note does not explain how to develop the GUI based on LVGL with the GUI Guider
software tool.

The overview of the LVGL and GUI Guider is described in Section 1.1 and Section 1.2.

1.1 Light and Versatile Graphics Library
Light and Versatile Graphics Library (LVGL) is a free and open-source graphics library. It provides everything
that you require to create an embedded GUI with easy-to-use graphical elements, beautiful visual effects, and a
low memory footprint.

1.2 GUI Guider
GUI Guider is a user-friendly graphical user interface development tool from NXP that enables the rapid
development of high-quality displays with the open-source LVGL graphics library. The drag-and-drop editor of
GUI Guider makes it easy to utilize the many features of LVGL. These features include widgets, animations, and
styles to create a GUI with minimal or no coding.

With the click of a button, you can run your application in a simulated environment or export it to a target project.
Generated code from GUI Guider can easily be added to your project, accelerating the development process
and allowing you to add an embedded user interface to your application seamlessly.

GUI Guider is free to use with NXP general purpose and crossover MCUs and includes built-in project
templates for several supported platforms.

To learn more about LVGL and GUI development on GUI Guider, visit https://lvgl.io/ and GUI Guider.

2 Development environment

Prepare and set up the development environment for developing and integrating a GUI app to the smart HMI
platform.

Hardware environment
AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
2 / 12

https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD
https://www.nxp.com/design/designs/nxp-edgeready-smart-hmi-solution-based-on-i-mx-rt117h-with-ml-vision-voice-and-graphical-ui:SLN-TLHMI-IOT-RD
https://www.nxp.com/design/software/embedded-software/lvgl-open-source-graphics-library:LITTLEVGL-OPEN-SOURCE-GRAPHICS-LIBRARY
https://lvgl.io/
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

The following hardware is required for the demonstration after development:

• The smart HMI development kit based on NXP i.MX RT117H
• SEGGER J-Link with a 9-pin Cortex-M adapter

Software environment

The software tools and their versions used in this application note are introduced, as below:

• GUI Guider V1.5.0-GA
• MCUXpresso IDE V11.7.0

Note: A bug in versions before 11.7.0 does not allow proper build-in multicore projects. Therefore, version
11.7.0 or greater is required.

• RT1170 SDK V2.12.1
• SLN-TLHMI-IOT software platform – smart HMI source codes released in our official GitHub repository

To learn more about how to set up and install the hardware and software environment, see Getting Started with
the SLN-TLHMI-IOT (document MCU-SMHMI-GSG).

3 Integrate LVGL GUI application into smart HMI platform

The smart HMI software platform is built on framework architecture. Developers find it difficult to add their LVGL
GUI application to the smart HMI software platform even if they read the developer guide and know about the
framework. The next sections explain how to implement it step by step.

3.1 Develop LVGL GUI application on GUI Guider
As mentioned above, how to develop the LVGL GUI on GUI Guider is not the emphasis in this application note.
But a GUI example is necessary. Therefore, one simple GUI template named SliderProgress provided in GUI
Guider is selected as the GUI example for a quick setup. The SliderProgress GUI template is used because it
contains an image that is required to demonstrate building image resources in the application. The GUI example
is very easy to generate: To create a project with the updated LVGL library V8.3.2 and the board template as
MIMXRT1176xxxxx, refer to GUI Guider User's Guide (document GUIGUIDERUG). Figure 1 shows the project
settings.

Note: The panel type must be selected, as shown in the red box in Figure 1, as it is used on the current
development board.

After creating the project, run the simulator to generate the related LVGL GUI codes and build the project as
well. You may check the effect of the GUI example on the simulator.

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
3 / 12

https://www.nxp.com/doc/MCU-SMHMI-GSG
https://www.nxp.com/design/software/development-software/gui-guider:GUI-GUIDER

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

Figure 1. GUI project setup on GUI Guider

3.2 Create your project on smart HMI
Note: First, create your project on MCUXpresso IDE.

After the LVGL GUI example has been built, it can go to the main target to integrate it into the smart HMI
software platform on the MCUXpresso project for implementing your GUI application.

The simple and quick method is to clone the current application project presented on the smart HMI platform.
The elevator app is the better choice as the cloned source since it has a simple implementation.

To create your project, follow the steps below:

1. Copy and paste the "elevator" folder in the cloned smart HMI source code from GitHub. Rename it to yours.
For this example, we have chosen "slider_progress", following the name of the GUI example.

2. In the "slider_progress" folder, enter the "lvgl_vglite_lib" folder containing the LVGL GUI project.
3. Open the project-related files .cproject and .project and replace all the string "elevator" with your

project name string "slider_progress".
4. Do the similar replacement for both project files in the "cm4" and "cm7" folders.

Set up your project by cloning the elevator project files.

As shown in Figure 2 your projects can now be opened in MCUXpresso IDE in the same manner as the elevator
project.

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
4 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

Figure 2. Projects setup on MCUXpresso

3.3 Build the resources for smart HMI
Generally, images are used in GUI (sounds used in voice prompts as well). The images and sounds are called
resources, stored in a flash in sequence. Before programming them on flash, the resources should be built into
a binary file. The main job is to replace the names of the reference app (elevator) with yours.

To do so, follow the steps below:

1. Delete the cloned "images" folder under slider_progress/resource.
2. Copy the "images" folder under \generated in your GUI Guider project.
3. Paste it under the slider_progress/resource (That is, use your own images rather than those from

the elevator app.).
4. Delete the *.mk file used for GUI Guider in the "images" folder.
5. Rename the files elevator_resource.txt, elevator_resource_build.bat,

and elevator_resource_build.sh in the "resource" folder to your project name
slider_progress_resource.txt, slider_progress_resource_build.bat, and
slider_progress_resource_build.sh.
Remark:
• elevator_resource.txt: containing the paths and names of all the resources (images and sounds)

used in the app.
• elevator_resource_build.bat/elevator_resource_build.sh: used for building the resources

in Windows and Linux accordingly.
6. After opening the slider_progress_resource.txt file, replace all strings "elevator" with

"slider_progress".
7. Remove all old images and add new ones with your image file names (here is

"_scan_example_597x460.c"), such as
image ../../slider_progress/resource/images/_scan_example_597x460.c.

8. Open the slider_progress_resource.bat file for Windows and replace all strings "elevator" with
"slider_progress". Do the same to the file slider_progress_resource.sh for Linux.

9. Double-click the batch file slider_progress_resource_build.bat for Windows.
10. The command window appears and automatically runs to generate the image resource binary file containing

the image data and resource access information containing C codes to set all image locations in flash and
the total byte size of the images.
After showing the message "Resource Generation Complete!", the image resource binary file
named slider_progress_resource.bin and the resource access information file named
resource_information_table.txt are generated in the folder "resource". The image resource binary

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
5 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

file is programed on flash, and the resource access information is used to access the resources on smart
HMI (see Section 3.4.1).

3.4 Integrate LVGL GUI application into smart HMI
The LVGL GUI application codes (here is the SliderProgress GUI example) and the built image resources,
including access information, can be added to the smart HMI. Additionally, to implement your LVGL GUI
application on smart HMI, it is required to add the HAL devices related to LVGL GUI and the related
configurations. The LVGL GUI application is running on the M4 core, and the related implementation is almost
in the M4 project "sln_smart_tlhmi_slider_progress_cm4". The detailed steps are described in further sub
sections.

3.4.1 Add LVGL GUI codes and resources

The LVGL GUI application codes used for smart HMI are in the folders "custom" and "generated" in the GUI
Guider project.

To add the codes to smart HMI, follow the steps below:

1. Replace custom.c and custom.h under slider_progress/cm4/custom/ with the ones in the folder
"custom" in the GUI Guider project.

2. Remove the "generated" folders from slider_progress/cm4/. Then copy the "generated" folder from the
GUI Guider project and paste it to slider_progress/cm4/.

3. Delete the folders "image" and "mPythonImages" and all the files *.mk and *.py in the "generated" folder.
As mentioned above, the images in the "image" folder are built into a resource binary file, so the "image"
folder is not required. The folder "mPythonImages" and all the files *.mk and *.py are unwanted for the
smart HMI.

4. To add mutex control based on the smart HMI platform and set the image locations on flash, modify the file
custom.c on MCUXpresso IDE. These are all defined by RT_PLATFORM.

5. Open elevator project on MCUXpresso IDE. Search the macro definition RT_PLATFORM in
the custom.c under sln_smart_tlhmi_elevator_cm4 > custom and copy all the code lines
from #if defined(RT_PLATFORM) to #endif, and paste them in the file custom.c under
sln_smart_tlhmi_slider_progress_cm4 > custom.

6. Delete the code lines under #else containing #else since they are used for elevator GUI.
The added code lines cover the following:
• The include files are as follows:

#if defined(RT_PLATFORM) & LVGL_MULTITHREAD_LOCK
#include "FreeRTOS.h"
#include "semphr.h"
#include "lvgl_images_internal.h"
#endif

• The variable declaration is as follows:

#ifdef RT_PLATFORM
/* LVGL should be single thread. Get this mutex for multithread access */
static SesaphoreHandle_t s_LVGLMutex;
#endif /*RT_PLATFORM*/

• The C codes in the function custom_init() are as follows:

void custom_init(lv_ui *ui)
{
 /* Add your codes here */
 #ifdef RT_PLATFORM s_LVGLMutex = xSemaphoreCreateMutex();
 if (s_LVGLMutex == NULL)

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
6 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

 {
 while (1)
 {
 }
#endif
}

• The C codes for the functions _takeLVGLMutex(), _giveLVGLMutex(), and setup_imgs() where
the locations of all the images are set.

7. Replace codes in the function setup_imgs() with the location setup codes for images in the
resource_information_table.txt file (see Section 3.3). In this application note, there is only one
image resource which is set up as: _scan_example_597x460.data = (base + 0);
After doing it, the function setup_imgs() is shown as below:

void setup_imgs(unsigned char *base)
{
 _scan_example_597x460.data = (base 0);
}
#endif

8. To add the macro definition and function declaration related to custom.c, modify the custom.h file under
sln_smart_tlhmi_slider_progress_cm4 > custom, as shown below:

#define LVGL_MULTITHREAD_LOCK 1
void _takeLVGLMutex();
void _giveLVGLMutex();
void setup_imgs(unsigned char *base);

9. To define the images in your LVGL GUI application, modify the lvgl_images_internal.h file under
sln_smart_tlhmi_slider_progress_cm4 > custom.
• Open one image *.c file (here is _scan_example_597x460.c) under /generated/
image/ in the GUI Guider project. Copy the image definition at the end of the file. Paste it to the
lvgl_images_internal.h file after deleting all the original definitions about the images for the elevator
app.

• Delete .data = _scan_example_597x460_map in the array since the .data is set in the function
setup_imgs(). The array is defined finally in the lvgl_images_internal.h file, as shown below:

lv_img_dsc_t _scan_example_597x460 =
{
 .header.always_zero = 0,
 .header.w = 597,
 .header.h = 460,
 .data_size = 274620 * LV_COLOR_SIZE / 8,
 .header.cf = LV_IMG_CF_TRUE_COLOR_ALPHA,
};

Remark: Repeat the above operations for all image files one by one if there are multi-image files.
10. Configure the total size of the image resource by defining the macro definition APP_LVGL_IMGS_SIZE in

the app_config.h file under sln_smart_tlhmi_slider_progress_cm7 > source with the new size of the
images. This new size is available in the built resource resource_information_table.txt file.

3.4.2 Add HAL devices and configurations

Based on the framework architecture, two HAL devices (display and output devices) are designed for LVGL
GUI application. The implementations of the two devices are different depending on different LVGL GUI
applications though there are common architecture designs for them. They are implemented separately in two
files. Therefore, it must clone the two files from the present elevator application and modify your LVGL GUI
application. Then, enable your devices in the configuration file. Your LVGL GUI application is built on the smart

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
7 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

HMI platform based on the framework. The detailed modifications can be done in the MCUXpresso IDE, as
shown below:

• Implement display HAL device

1. Copy and paste the hal_display_lvgl_elevator.c file under the group
sln_smart_tlhmi_slider_progress_cm4 > framework > hal > display on MCUXpresso project. Rename it
to hal_display_lvgl_sliderprogress.c for your application.

2. Open the file hal_display_lvgl_sliderprogress.c and replace all the strings "elevator" with your
application string "SliderProgress" in the file.

• Implement output HAL device

1. Copy and paste the hal_output_ui_elevator.c file under the group
sln_smart_tlhmi_slider_progress_cm4 > framework > hal > output on the MCUXpresso project.
Rename it to hal_output_ui_sliderprogress.c for your application.

2. Open the file hal_output_ui_sliderprogress.c. Remove all the functions related to the elevator
application except the following basic common functions of the HAL device:
HAL_OutputDev_UiElevator_Init();
HAL_OutputDev_UiElevator_Deinit();
HAL_OutputDev_UiElevator_Start();
HAL_OutputDev_UiElevator_Stop();
HAL_OutputDev_UiElevator_InferComplete();
HAL_OutputDev_UiElevator_InputNotify();
In addition, reserve the declarations of the below two functions:
APP_OutputDev_UiElevator_InferCompleteDecode();
APP_OutputDev_UiElevator_InputNotifyDecode();

3. Clean the function HAL_OutputDev_UiElevator_InferComplete() for building your
application later. In the function, remove both function calls _InferComplete_Vision() and
_InferComplete_Voice() used for handling the results from vision and voice algorithms for elevator
application.

4. Clean the function HAL_OutputDev_UiElevator_InputNotify() and keep the basic architecture for
further application development. Finally, the function looks as follows:

static hal_output_status_t HAL_OutputDev_UiElevator_InputNotify(const
 output_dev_t *dev, void *data)
{
 hal_output_status_t error = kStatus_HAL_OutputSuccess;
 event_base_t *pEventBase = (event_base_t *)data;
 /* Add 'inputNotify' event handler code here */
 APP_OutputDev_UiElevator_InputNotifyDecode(pEventBase);
 return error;
}

5. Remove all the variables declarations, including the enum and array, except the ones s_UiSurface and
s_AsBuffer[] used for the common implementations.

6. Replace all strings "elevator" with your application string "SliderProgress".

• Enable and configure both HAL devices

1. Open the board_define.h file under sln_smart_tlhmi_slider_progress_cm4 > board. Replace all
the strings "elevator" with your application string "SliderProgress" in the file. It enables and configures the
display and output HAL devices by the definitions ENABLE_DISPLAY_DEV_LVGLSliderProgress and
ENABLE_OUTPUT_DEV_UiSliderProgress.

2. Open the lvgl_support.c file under sln_smart_tlhmi_slider_progress_cm4 > board. Replace all the
strings "elevator" with your application string "SliderProgress" in the file. It enables camera preview on GUI
at the display driver level.

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
8 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

• Register both HAL devices

Open the M4 main sln_smart_tlhmi_cm4.cpp file under sln_smart_tlhmi_slider_progress_cm4 >
source. Replace all the strings "elevator" with your application string "SliderProgress" in the file. It registers the
display and output HAL device for your application instead of the elevator application.

Therefore, the integration is completed for running the basic LVGL GUI application on smart HMI. Depending
on more requirements for the application, more implementations can be added based on the integrated basic
application.

4 Demonstration

The "slider_progress" application demo is implemented along with this application note.

After unzipping the demo software package, put the below files and folder into the smart HMI software:

• The file hal_display_lvgl_sliderprpgress.c under [demo]\framework\hal\display\ to the
path [smart HMI]\framework\hal\display\

• The file hal_output_ui_slider_progress.c under [demo]\framework\hal\output\ to the path
[smart HMI]\framework\hal\output\

• The folder "slider_progress" to the root path of [smart HMI]\

The projects can be opened on MCUXpresso IDE, just like the coffee machine/elevator app presented on the
smart HMI platform. After programming the built *.axf file to the address 0x30100000 and the resource binary
file to the address 0x30700000, the LVGL GUI demo can run successfully on the smart HMI development board
(see Figure 3 for the screen display).

Note: If using v1.7.0 of MCUXpresso IDE, enable the "Manage link script" in the Setting > MCU C++ Linker >
Managed Linker Script before building the CM4 project.

Figure 3. LVGL GUI demo display on smart HMI development board

5 Revision history

Revision history summarizes the revisions to this document.

Revision number Date Substantive changes

1 16 June 2023 Initial release

Table 1. Revision history

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
9 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

6 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
10 / 12

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

7 Legal information

7.1 Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

7.2 Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

7.3 Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
i.MX — is a trademark of NXP B.V.

AN13948 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 1 — 16 June 2023
11 / 12

mailto:PSIRT@nxp.com

NXP Semiconductors AN13948
Integrating LVGL GUI Application into Smart HMI Platform

Contents
1 Introduction ... 2
1.1 Light and Versatile Graphics Library2
1.2 GUI Guider .. 2
2 Development environment 2
3 Integrate LVGL GUI application into smart

HMI platform .. 3
3.1 Develop LVGL GUI application on GUI

Guider .. 3
3.2 Create your project on smart HMI 4
3.3 Build the resources for smart HMI5
3.4 Integrate LVGL GUI application into smart

HMI .. 6
3.4.1 Add LVGL GUI codes and resources6
3.4.2 Add HAL devices and configurations7
4 Demonstration ... 9
5 Revision history .. 9
6 Note about the source code in the

document ... 10
7 Legal information ..11

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 16 June 2023
Document identifier: AN13948

	1 Introduction
	1.1 Light and Versatile Graphics Library
	1.2 GUI Guider

	2 Development environment
	3 Integrate LVGL GUI application into smart HMI platform
	3.1 Develop LVGL GUI application on GUI Guider
	3.2 Create your project on smart HMI
	3.3 Build the resources for smart HMI
	3.4 Integrate LVGL GUI application into smart HMI
	3.4.1 Add LVGL GUI codes and resources
	3.4.2 Add HAL devices and configurations

	4 Demonstration
	5 Revision history
	6 Note about the source code in the document
	7 Legal information
	Contents

