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1   Introduction

This application note introduces the application of SmartDMA on the graphic. In addition to the general DMA
function, it also supports data format processing.

All MCX N series MCUs include a SmartDMA coprocessor, which can effectively reduce the load on the ARM
core and perform flexible data conversions.

2   Graphic lib support

The graphic library supports the following data processing:

• Common DMA
• Endian Swap
• Reverse order
• RGB565 to RGB888
• ARGB to RGB
• ARGB to RGB, then swap endian
• ARGB to RGB, then swap endian and reverse

Here, A in ARGB is Alpha (transparency).

3   Advantages over traditional DMA

DMA mainly supports data transfer between memory and peripherals, between peripherals and peripherals, and
between memory and memory. In addition to accessing all peripherals and memory, SmartDMA can execute
instruction code, mathematical operations, data flipping, shifting, judgment, and so on. So, SmartDMA is more
flexible than DMA.

On the MCX N series of MCUs, FlexIO can be used to drive the LCD screen. However, sometimes the data is
not as expected and need slight adjustments. If traditional DMA is used, it is difficult to preprocess the data and
requires the ARM core to handle it, which takes more time and load. SmartDMA can be used for preprocessing
and then transmitting the processed data to FlexIO.

4   Function description

SmartDMA can achieve many functions. It can be used as a common DMA to transfer data. It can also
implement data format processing, such as flipping bytes, flipping bit order, removing part of the data, and so
on.

4.1  Common DMA
SmartDMA can access all peripherals and storage. It has the functions of common DMA, such as data transfer
from peripheral to peripheral, memory to memory, peripheral to memory, and memory to peripheral.

Because it can execute programming instructions, its functionality can be more flexible, and its parameters can
be complete.

In this application note, the demo used is the simplest common DMA function. SmartDMA moves memory data
to the FlexIO peripheral data register and FlexIO outputs data to the LCD.

Currently, the functionality of a common DMA operation is relatively simple. It only needs app code to provide
SmartDMA with the data address and data length to be transferred. SmartDMA moves this data into the FlexIO
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data register automatically. Once the FlexIO data register requires data, it automatically sends a request to
SmartDMA.

4.2  Endian Swap
Endian swap represents byte order swapping. Here specifically refers to the exchange of high and low bytes in
16-bit data.

For example:

The input data:

Data in byte [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D,
1E, 1F]

After operation of SmartDMA, the output data:

Data in byte [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, B, A, D, C, F, E, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 1B, 1A, 1D, 1C, 1F,
1E]

In the MCX N series MCU, FlexIO has 8 data registers. Each register has 4 bytes. 8 data registers need 32
bytes of data. Therefore, SmartDMA can process 32 bytes of data to send to FlexIO each time.

4.3  Reverse order
This function refers to the reversal of byte order. In other words, when providing 32 bytes of data to SmartDMA,
SmartDMA reverses the data and places the result data into 8 FlexIO data registers.

For example:

The input data:

Data in byte [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D,
1E, 1F]

After operation of SmartDMA, the output data:

Data in byte [1F, 1E, 1D, 1C, 1B, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, F, E, D, C, B, A, 9, 8, 7, 6, 5, 4, 3, 2,
1, 0]

4.4  RGB565 to RGB888
To save RAM space, the image data can be stored by using the RGB565 pixel format. However, some LCD
screen modules use the RGB888 interface. The SmartDMA can implement the conversion from RGB565 to
RGB888 format. The result of SmartDMA conversion can be directly sent to the data register of FlexIO, which
does not expand the occupation of memory space.

4.5  ARGB to RGB
ARGB is RGB data with an alpha component. Some original image data is in ARGB format, but the display
screen may not support this format. In this case, it is necessary to remove the alpha value from each pixel data
and then send it to the display interface. This implementation requires processing each pixel, and SmartDMA
can easily and efficiently remove the alpha value. Additionally, SmartDMA can access the data register of
FlexIO and send the converted data to the FlexIO data register directly.

SmartDMA can combine the functions of ARGB to RGB, swap endian, and reverse for use. The result is placed
in the data register of FlexIO.

The flexibility and independence of SmartDMA can be verified in these functions.
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5   Software description

The task execution instructions of SmartDMA are encapsulated in an array. Open some API functions for users
to use. The functions used in this application note have been involved in the SDK of MCX N series MCU.

5.1  SDK example introduction
In the SDK of MCX N series MCU, there is a sample called lvgl_demo_widgets_bm. This example is used to
demonstrate the LVGL widget demo.

The example uses FlexIO to emulate the MCU8080 interface, driving a 3.5-inch LCD screen. The SmartDMA
serves as the function of a common DMA and is responsible for transferring data to FlexIO data registers.

5.2  SmartDMA function array
The SmartDMA display API can be found in the file fsl_smartdma_mcxn.h. As below code snippet:

/*!
* @brief The API index when using s_smartdmaDisplayFirmware.
*/
enum _smartdma_display_api
{
    kSMARTDMA_FlexIO_DMA_Endian_Swap = 0U,
    kSMARTDMA_FlexIO_DMA_Reverse32,
    kSMARTDMA_FlexIO_DMA,
    kSMARTDMA_FlexIO_DMA_Reverse,  /*!< Send data to FlexIO with reverse order.
 */
    kSMARTDMA_RGB565To888,  /*!< Convert RGB565 to RGB888 and save to output
 memory, use parameter
    smartdma_rgb565_rgb888_param_t. */
    kSMARTDMA_FlexIO_DMA_RGB565To888,  /*!< Convert RGB565 to RGB888 and send to
 FlexIO, use parameter
    smartdma_flexio_mculcd_param_t. */
    kSMARTDMA_FlexIO_DMA_ARGB2RGB,  /*!< Convert ARGB to RGB and send to FlexIO,
 use parameter
    smartdma_flexio_mculcd_param_t. */
    kSMARTDMA_FlexIO_DMA_ARGB2RGB_Endian_Swap, /*!< Convert ARGB to RGB, then
 swap endian, and send to FlexIO, use
    parameter smartdma_flexio_mculcd_param_t. */
    kSMARTDMA_FlexIO_DMA_ARGB2RGB_Endian_Swap_Reverse, /*!< Convert ARGB to RGB,
 then swap endian and reverse, and send
    to FlexIO, use parameter smartdma_flexio_mculcd_param_t. */
};

In the fsl_smartdma_mcxn.c file, there is an array called s_smartdmaDisplayFirmware, which contains
the implementation of SmartDMA functions. The purpose of encapsulating the SmartDMA functions into
an array is to reduce the SmartDMA research cost for users. It also allows them to directly use the module
functions implemented, enabling faster implementation of application functions.
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5.3  SmartDMA initialization
The functions described in Table 1 implement the initialization of SmartDMA.

Routine Description

SMARTDMA_InitWithoutFirmware
Initialize the SmartDMA

SMARTDMA_InstallFirmware
Install the firmware

SMARTDMA_InstallCallback
Install the complete callback function

SMARTDMA_Boot
Boot the SMARTDMA to run the program

SMARTDMA_Deinit
De-initialize the SMARTDMA

SMARTDMA_Reset
Reset the SMARTDMA

SMARTDMA_HandleIRQ
SMARTDMA IRQ

FLEXIO_MCULCD_SMARTDMA_Callback
SMARTDMA interrupt callback

Table 1. SmartDMA initialization

5.3.1  Init SmartDMA

To enable SmartDMA, perform the following operations:

1. Clear reset of SmartDMA.
2. Set FlexIO IRQ as the SmartDMA trigger input.
3. Enable the clock for SmartDMA.
4. Enable the IRQ for SmartDMA.

5.3.2  Install SmartDMA firmware

The function module of SmartDMA must be placed at a fixed memory address to work fine. In this application, it
must be placed at 0x04000000, as described below:

/*! @brief The firmware used for display. */
extern const uint8_t s_smartdmaDisplayFirmware[];
/*! @brief The s_smartdmaDisplayFirmware firmware memory address. */
#define SMARTDMA_DISPLAY_MEM_ADDR 0x04000000U
/*! @brief Size of s_smartdmaDisplayFirmware */
#define SMARTDMA_DISPLAY_FIRMWARE_SIZE (s_smartdmaDisplayFirmwareSize)

The process of installing SmartDMA firmware is essentially copying the code array of SmartDMA function
modules to a specified RAM address, as described below:

SMARTDMA_InstallFirmware(SMARTDMA_DISPLAY_MEM_ADDR, s_smartdmaDisplayFirmware,
 SMARTDMA_DISPLAY_FIRMWARE_SIZE);
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5.3.3  SmartDMA callback routine

SmartDMA can actively trigger an interruption in the ARM core, such as after the end of data transfer.

SmartDMA has a related interrupt number (SMARTDMA_IRQHandler) in the ARM vector table. In the
configuration phase of SmartDMA, a callback function can be installed, as described below:

SMARTDMA_InstallCallback(FLEXIO_MCULCD_SMARTDMA_Callback, handle);

In the callback function, the ARM core can configure the FlexIO to allow the task to continue.

5.3.4  Boot SmartDMA API

In the application, define a structure to set parameters related to SmartDMA. These parameters include the
address of the data buffer, the length of data transfer, and the address of SmartDMA stack space. The most
important thing is to find an API that must be executed from the SmartDMA function block code. See the below
code.

handle->smartdmaApi = (uint8_t)kSMARTDMA_FlexIO_DMA;
handle->smartdmaParam.p_buffer = (uint32_t *)(xfer->dataAddrOrSameValue +
 part1Len);
handle->smartdmaParam.buffersize = part2Len;
handle->smartdmaParam.smartdma_stack = handle->smartdmaStack;
SMARTDMA_Reset();
SMARTDMA_Boot(handle->smartdmaApi, &(handle->smartdmaParam), 0);

The process of boot is to give the address of the corresponding API to the program counter of SmartDMA, and
then it begins to execute the function block.

6   Demo based on FRDM-MCXN947 introduction

Download the latest SDK for MCX N MCU. Open the path of example lvgl_demo_widgets_bm. The root path
is:

\boards\frdmmcxn947\lvgl_examples\lvgl_demo_widgets_bm\cm33_core0

This project primarily demonstrates the functionality of LVGL widgets. The display driver is implemented by
using FlexIO to emulate the MCU8080 interface. SmartDMA assists FlexIO in transferring data from RAM to the
data register.

Figure 1 shows the IAR project.
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Figure 1. IAR project

To show the common DMA function of SmartDMA, perform the following steps:

1. Connect the USB cable to the computer and FRDM-MCXN947 port J17.
2. Compile and download the code.
3. Press the Reset button, and the code starts to run.
4. The operation of the LVGL widget demo displays on the screen.

Figure 2. LVGL widget demo

AN14172 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 2.0 — 6 May 2024
7 / 12



NXP Semiconductors AN14172
Using SmartDMA for Graphic on MCX N Series MCU

7   Demo based on FRDM-MCXN236 introduction

Download the latest SDK for MCX N MCU. Open the path of lvgl_demo_widgets_bm example. The root path
is: \boards\frdmmcxn236\lvgl_examples\lvgl_demo_widgets_bm.

This project primarily demonstrates the functionality of LVGL widgets. The display driver is implemented by
using FlexIO to emulate the MCU8080 interface. SmartDMA assists FlexIO in transferring data from RAM to the
data register.

Figure 3 shows the MCUXpresso project.

Figure 3. MCUXpresso project

To show the common DMA function of SmartDMA, perform the following steps:

1. Connect the USB cable to the computer and FRDM-MCXN236 port J10.
2. Compile and download the code.
3. Press the Reset button, and the code starts to run.
4. The operation of the LVGL widget demo displays on the screen.

Figure 4 shows the demo result.
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Figure 4. Demo result

8   Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9   Revision history

Table 2 summarizes the revisions done to this document.

Document ID Release date Description

AN14172 v.2.0 6 May 2024 • Updated Section 6
• Added Section 7

AN14172 v.1.0 20 January 2024 Initial public release

Table 2. Revision history
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