
AN2724
Rev. 0, 4/2004

Using the HCS12X PIT as a
24-bit Elapsed Timer

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.
 By Stephen Pickering
8/16-bit Systems Group
East Kilbride, Scotland

Introduction

This application note demonstrates how the Programmable Interrupt Timer
(PIT) module on the HCS12X can be used as a 24-bit elapsed timer.

The HCS12X Programmable Interrupt Timer

The Programmable Interrupt Timer is an array of two 8-bit micro timers and four
16-bit timers that can be used to trigger peripheral modules or to raise periodic
interrupts. Notable features of the Programmable Interrupt Timer are as
follows.

• Four timers implemented as programmable modulus down-counters
with independent timeout periods

• Timeout periods selectable between 1 and 224 bus clock cycles. The
timeout equals m*n bus clock cycles, where 1 <= m <= 256 and
1 <= n <= 65536

• The timers can be enabled individually

• Starting of timer channels can be aligned to each other
© Motorola, Inc., 2004

For More Information On This Product,
 Go to: www.freescale.com

 Semiconductor, Inc., 2004. All rights reserved.

AN2724

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. The HCS12X Programmable Interrupt Timer

Elapsed Time The two micro timers can be programmed but cannot be read. Therefore, the
maximum resolution is 16 bits, using the main timer.

24-bit Elapsed Time By configuring the micro timers such that one is configured as divide-by-1 and
the other as divide-by-256, and assigning the micro timers to different timers,
one timer can be configured to count bus cycles modulus 256, and the other
timer to count bus cycles, divided by 256 modulus, 65536. By combining the
two counters, a 24-bit bus count can be achieved.

For this example, Timer 0 and Timer 1 are used with both micro timers.

Figure 2. Logical Configuration of the Programmable Interrupt Timer

Timeout 0 Interrupt 0
Bus Clock 16-bit Timer 0

16-bit Timer 1

16-bit Timer 2

16-bit Timer 3

Interface

Interface

Interface

Interface

Trigger 0

Interrupt 1
Trigger 1

Interrupt 2
Trigger 2

Interrupt 3
Trigger 3

Timeout 1

Timeout 2

Timeout 3

8-Bit Micro
Timer 0

8-Bit Micro
Timer 1

Micro
Timebase 0

Micro
Timebase 1

15 08 7

16 15 08 723

15 08 7

Micro Timer 0

Micro Timer 1

Modulus 256

Modulus 65536Divide by 256

Divide by 1

Bus Clock

Timer 1

Timer 0
2 Using the HCS12X PIT as a 24-bit Elapsed Timer

For More Information On This Product,
 Go to: www.freescale.com

AN2724
Configuring the Programmable Interrupt Timer

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Configuring the Programmable Interrupt Timer

The code listed below will set up the Programmable Interrupt Timer as a 24-bit
elapsed timer.

/*
Let's use the PIT as a 24 bit BUS cycle timer.
Channel 0 will be bus clocks modulo 256
Channel 1 will be bus clocks / 256
So Channel1 * 256 + Channel0 is the 24bit bus count
Micro timer0 bus clock
Micro timer1 bus clock / 256
*/
 PIT.pitcflmt.byte = PITE; /*Enable PIT*/
 PIT.pitmtld0.byte = 0; /*Micro timer 0 [MT0] - divide by 1*/
 PIT.pitmtld1.byte = 0xff; /*Micro timer 1 [MT1] - divide by 256*/
 PIT.pitld0.word = 0xff; /*Timer 0 - reload 0xff*/
 PIT.pitld1.word = 0xffff; /*Timer 1 - reload 0xffff*/
 PIT.pitmux.byte = PMUX1; /*Assign MT0 to Timer0 & MT1 to Timer1*/
 PIT.pitinte.byte = 0; /*disable interrupts*/

Starting the timer

The code listed below can be used to start the timer

/*Enable timers 0 & 1*/
PIT.pitce.byte = PCE1 | PCE0;
/*load both the micro timers and the main timers as a single 16-bit*/
*((unsigned int *)&PIT.pitcflmt)=
((PITE|PITFRZ|PFLMT1|PFLMT0)<<8)|(PFLT1|PFLT0)

By forcing a load of both the micro timers and the main timers by a single 16-bit
write to the Programmable Interrupt Timer control registers, the micro timers
and main timers will be reset at the same time and will thus be in perfect
synchronism.

Data

In order to use the timer, it is necessary to allocate some variables. One
variable is used for a timer offset, which is an overhead associated with starting
and stopping the timer. The other variable is for the number of cycles. As the
cycle count can be up to 16,777,215, requiring 24 bits, 32-bit variables are
used.
Using the HCS12X PIT as a 24-bit Elapsed Timer 3

For More Information On This Product,
 Go to: www.freescale.com

AN2724

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

volatile unsigned long int timing_offset, cycles;

Stopping and Reading Time

Disabling the micro timers will stop the count, and the number of bus cycles can
be read from the main timers.

PIT.pitcflmt.byte = PITE;/*Disable Microtimers*/
/*read timers & Calculate elapsed cycles*/
cycles = (((unsigned long)((~PIT.pitcnt1.word)&0xffff))<<8) \
 + ((unsigned long)((~PIT.pitcnt0.word)&0xff)) \
 - timing_offset;

It is not necessary to disable the main timers, as stopping the micro timers will
prevent the main timers from advancing.

Offset

To calculate the timing offset, all that is required is to start the timer, stop it, and
then read the timer’s value, which is the overhead caused by starting and
stopping the timer.

/*Enable timers 0 & 1*/
PIT.pitce.byte = PCE1 | PCE0;
/*load both the micro timers and the main timers as a single 16-bit*/
*((unsigned int *)&PIT.pitcflmt)=
((PITE|PITFRZ|PFLMT1|PFLMT0)<<8)|(PFLT1|PFLT0);
PIT.pitcflmt.byte = PITE;/*Disable Microtimers*/
/*read timers & Calculate elapsed cycles*/
timing_offset = (((unsigned long)((~PIT.pitcnt1.word)&0xffff))<<8) \
 + ((unsigned long)((~PIT.pitcnt0.word)&0xff;
4 Using the HCS12X PIT as a 24-bit Elapsed Timer

For More Information On This Product,
 Go to: www.freescale.com

AN2724
Macros

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Macros

In order to improve portability and readability the following macros can be used.

#define TIMER_SETUP timer_setup()

#define TIMER_START PIT.pitce.byte = PCE1 | PCE0; \
 *((unsigned int *)&PIT.pitcflmt)= \
 ((PITE | PITFRZ | PFLMT1 | PFLMT0)<<8) |(PFLT1 | PFLT0)

#define TIMER_READ32(cycles) PIT.pitcflmt.byte = PITE;/*Disable Microtimers*/ \
 /*read timers*/ \
 cycles = \
 (((unsigned long)((~PIT.pitcnt1.word)&0xffff))<<8)\
 + ((unsigned long)((~PIT.pitcnt0.word)&0xff))

#define TIMER_OFFSET(timing_offset) TIMER_START; \
 TIMER_READ32(timing_offset)

#define TIMER_CYCLES(cycles) TIMER_READ32(cycles); cycles-=timing_offset

The timer initialization code is listed below.

Macro Description

TIMER_SETUP Initializes the timer

TIMER_START
Resets the main timers (and micro timers) and
synchronously starts the timers

TIMER_READ32
Stops the timer, and reads and returns the 24-bit time as a
32-bit integer

TIMER_OFFSET
Starts the timer and immediately stops it. The time recorded
is the overhead associated with starting and stopping the
timer

TIMER_CYCLES Stops the timer, reads its value and subtracts the offset
Using the HCS12X PIT as a 24-bit Elapsed Timer 5

For More Information On This Product,
 Go to: www.freescale.com

AN2724

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

void timer_setup(void){
/*
Let's use the PIT as a 24 bit BUS cycle timer.
Channel 0 will be bus clocks modulo 256
Channel 1 will be bus clocks / 256
So Channel1 * 256 + Channel0 is 24bit bus count
Micro timer0 bus clock
Micro timer1 bus clock / 256
*/
 PIT.pitcflmt.byte = PITE; /*Enable PIT*/
 PIT.pitmtld0.byte = 0; /*Micro timer 0 - divide by 1*/
 PIT.pitmtld1.byte = 0xff; /*Micro timer 1 - divide by 256*/
 PIT.pitld0.word = 0xff; /*Timer 0 - reload 0xff*/
 PIT.pitld1.word = 0xffff; /*Timer 1 - reload 0xffff*/
 PIT.pitmux.byte = PMUX1; /*Assign MT0 to Timer0 & MT1 to Timer1*/
 PIT.pitinte.byte = 0; /*disable interrupts*/
 PIT.pitce.byte = PCE1 | PCE0; /*Enable timer 0 & 1*/
}

Using the Macros To use the macros to time code would require code similar to that shown below.

volatile unsigned long int timing_offset, cycles;

void main(){
 TIMER_SETUP;
 TIMER_OFFSET(timing_offset);

 TIMER_START;
 /* code */
 TIMER_CYCLES(cycles); /*read the number of elapsed cycles*/

}

NOTE: It may be necessary to modify the code if timers 2 and 3 are also being used.

References

1. HCS12X Programmable Interrupt Timer Block Guide (S12PITV1)
6 Using the HCS12X PIT as a 24-bit Elapsed Timer

For More Information On This Product,
 Go to: www.freescale.com

AN2724
References

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Using the HCS12X PIT as a 24-bit Elapsed Timer 7

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2724
For More Information On This Product,

 Go to: www.freescale.com

RXZB30
reachhibbert

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

	Introduction
	The HCS12X Programmable Interrupt Timer
	Elapsed Time
	24-bit Elapsed Time

	Configuring the Programmable Interrupt Timer
	Starting the timer
	Data
	Stopping and Reading Time
	Offset
	Macros
	Using the Macros

	References

