
1 Introduction
The MPC563xM is a low-cost, 32-Bit Qorivva microcontroller
with a Power Architecture® core intended primarily for low-
end engine management, such as a 4-cylinder gasoline-
powered engine. In addition to the e200z335 Power
Architecture core, the MPC563xM devices include an
independent timing processor: the enhanced Timing Processor
(eTPU2). Freescale offers a number of eTPU2 software
drivers for various functions (available at www.freescale.com/
etpu). The eTPU2 is typically used to control the timing of the
spark and fuel type functions for the engine.

This application note uses the eTPU2 PWM driver from the
eTPU2 general function set (Set 1, a set of eTPU(2) functions
taken from Freescale application note AN2865, "MPC5500 &
MPC5600 Simple Cookbook") to demonstrate an open-loop
LED dimmer control system. The system, as shown in Figure
1, consists of:

• Input device (trim potentiometer)
• Acquisition device (enhanced analog-to-digital

converter)
• Actuator (eTPU2)
• Output device (LED)

This example application combines two separate examples
from AN2865: the eTPU2 PWM demo and the eQADC single
software scan demo. This combined example measures the
voltage on the eQADC input pin and translates that to a PWM
duty cycle that is then sent to the eTPU2 PWM driver.

Freescale Semiconductor Document Number: AN4266

Application Note Rev. 1, May 2011

Using eTPU2 and eQADC for PWM
Control on the MPC563xM
A PWM-Controlled LED Dimmer

by: Mong Sim
Applications Engineering
Austin, Texas
USA

© 2011 Freescale Semiconductor, Inc.

Contents

1 Introduction ...1

2 PLL: Initializing system clock — enhanced mode2

2.1 Description ..2

2.2 Design ..3

2.3 Code..5

3 eQADC single software scan5

3.1 Description ..5

3.2 Design ..6

3.3 Code..8

4 eTPU2 PWM example ...8

4.1 Description ..8

4.2 Design ..9

4.3 Code ...11

5 Main program...13

5.1 Description...13

5.2 Design ..13

5.3 Code..14

6 Running the demo project..16

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc56xx-mcus/ultra-reliable-mpc563xm-for-automotive-industrial-engine-management:MPC563xM?utm_medium=AN-2021

In this example application the eQADC measures the voltage output from the accelerator and changes the current to the
throttle control by varying the PWM duty cycle using the eTPU2, effectively changing the speed. This is just one of the many
applications that the eQADC and eTPU2 can achieve together.

This example is designed for the low cost TRK-MPC5634M board (TRK), but can also be run on the MPC5634MKIT (EVB)
with expanded capability. In the following sections, I will describe in detail the three main blocks that drive this application.

R82

LED6

ETPU5

eTPU2eQADCTrim pot
W1

Ch 17

Figure 1. PWM-controlled LED dimmer

2 PLL: Initializing system clock — enhanced mode

2.1 Description
In this section, we will take a quick look at the PLL block diagram and the sub-blocks that are associated with the PLL. We
will program the PLL divider and multiplier to achieve the desired operating frequency for the system clock, using the
enhanced mode formula of the PLL. Figure 2 shows the block diagram of the PLL and how the different sub-logic blocks
interact with one another.

Since both the MPC563xM family EVB and TRK boards come with an 8 MHz crystal, we will use the crystal as our input
clock source to the PLL. We will program a 64 MHz system clock operating frequency.

The MPC563xM family also provides an output to verify the system clock frequency (at a clock rate that has been reduced by
division) via the EMIOS channel 12. Please refer to Table 1 for more information on the EMIOS [12] clock signal. For a
code example, please see the PLL-sysclk project in directory 563xM-CW in AN2865, "MPC5500 & MPC5600 Simple
Cookbook."

Freescale recommends that new applications use the PLL in enhanced mode. The non-enhanced PLL mode is also available
for backward compatibility.

PLL: Initializing system clock — enhanced mode

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

2 Freescale Semiconductor, Inc.

XTAL
OSC

EXTAL
XTAL

Pre-Divider
PREDIV Phase

Detector

Charge
Pump
Low Pass
Filter

VCO

Divider
MFD

Out Divider
RFD

FM
Controller

Control/Status Registers

PREDIV RFD MFD Lock

Clock Quality Monitor

Reference
Failure

FMPLL
Failure

PLLREF

RC
OSC

Figure 2. PLL enhanced mode example block diagram

Table 1. EMIOS Channel 12 Configuration

Signal MPC563xM family

SIU PCR (values
in hexadecimal)

Package pin number header pin

208 BGA 176 LQFP 144 LQFP

EMIOS[12] PCR191=0x60C N10 76 63 EVB-PJ8-8

TRK/P5 EMIOS12

2.2 Design

2.2.1 Design notes
In this example, after initializing the PLL predivider, divider, and multiplier, the PLL LOCK is tested by simply polling for
the desired status to occur. In a real system, a maximum timeout mechanism would be implemented. If lock is not achieved in
a maximum time, then an error message can be logged and the part can be reset.

Loss of lock and loss of clock detection are not enabled in this example. Because changing the predivider or multiplier can
cause loss of lock, the loss-of-lock circuitry and interrupts would not normally be enabled until after these steps are executed.

In devices that do not exit reset with PLL enabled as system clock, it is good practice to initialize PLL registers with the
multiplier and dividers before turning on the oscillator. Otherwise the reset default values may try to force the PLL to run
beyond its frequency specifications.

Attempting to increase the frequency in one step may cause overshoot of the PLL beyond the maximum sysclk specification
and could cause a brief sharp increase in current demand from the power supply. Therefore two frequency increases are
commonly used. The second increase only changes the divider after the PLL feedback loop, which does not cause loss of lock
because this divider only affects the feedback path.

PLL: Initializing system clock — enhanced mode

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 3

2.2.2 Clock configuration pin and register control bits
In this application, we will configure the PLL in enhanced mode by programming the ESYNCR1 and ESYNCR2 registers.
We will configure the clock configuration (CLKCFG) bit field of ESYNCR1 in normal mode, with crystal reference. Please
refer to the Enhanced Synthesizer Control Register section in the reference manual for detailed information.

The CLKCFG 3-bit field (see the Modes of Operation section in the PLL chapter of the reference manual) is used to change
the operating mode of the PLL. Bit 2 is not writable to zero while bit 1 is set. The reset state of bit 3 is determined by the
state of the PLLREF pin. For our application example, PLLREF must be set to logic '1' to achieve normal mode operation
with crystal reference. Table 2 lists the values of the CLKCFG bit field that are determined based on the state of the PLLREF
pin.

Table 2. Clock configuration

Device Pin Purpose Clock
configuration bit
affected by pin at

reset

Clock
configuration:

reset value

Clock
configuration:
common value

MPC563xM PLLREF Determines if clock
uses crystal or
external reference

FMPLL_ESYNCR1
[CLKCFG2]

FMPLL_ESYNCR1
[CLKCFG] = 0b01x
(Bypass mode with
crystal or external
reference)

FMPLL_ESYNCR1
[CLKCFG] = 0b111
(Normal mode with
crystal reference)

2.2.3 PLL to system clock to peripheral clocks
The PLL logic provides the ability to divide and to multiply when configuring the PLL output and system clock to the desired
operating frequency. Figure 2 shows the connections in the PLL block. Using the dividers and the multiplier with the formula
as shown in Enhanced PLL calculations — MPC563xM will enable us to calculate the desired system clock frequency for
our application.

2.2.4 Enhanced PLL calculations — MPC563xM
The system clock frequency in PLL enhanced mode is calculated using the formula shown in Figure 3.

Figure 3. Equation for system clock frequency in PLL enhanced mode

In this example, we will set our system clock frequency to 64 MHz with these divider and multiplier settings:

Table 3. PLL divider and multiplier settings

EMFD EPREDIV ERFD

64 0 8

Figure 4. Setting the PLL to 64 Mhz (example)

PLL: Initializing system clock — enhanced mode

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

4 Freescale Semiconductor, Inc.

Figure 4 illustrates an example of using an 8 MHz crystal frequency (Fref) to generate a target frequency of 64 MHz (Fsys),
using the divider and multiplier settings of Table 3.

2.3 Code
Here is the code for configuring the PLL in enhanced mode with an external crystal clock reference of 8 MHhz to produce a
64 MHz system clock frequency.

#include "mpc563m.h" /* Used for MPC563m devices */

...

FMPLL.ESYNCR2.R = 0x00000002; // ERFD = 2: divides Fpll by 8 (2**(ERFD+1))
FMPLL.ESYNCR1.R = 0xF0000000 + 40; // EPREDIV = 0: divides Fxtal by 1 (EPREDIV+1)
 // EMFD = 64: multiply EPrediv = 1
 // CLKCFG = 7 for normal mode with crystal ref
 // EMODE = 1 to enable enhanced mode

while (!FMPLL.SYNSR.B.LOCK){} // Wait for PLL to lock

FMPLL.ESYNCR1.R = 0xF0000000 + 64; // Do it in two steps, 40Mhz then 64Mhz
...

3 eQADC single software scan

3.1 Description
In this example application, we will use the eQADC analog channel 17 to sample the trim pot potential difference (the trim
pot is hardwired to channel 17). We will configure the ADC clock to 2 MHz using the ADC clock prescaler. Command FIFO
0 and Read FIFO 0 are used in this application to send commands and retrieve data from the eQADC. ADC 0 is used in the
example and will be configured in single-scan software trigger mode. Figure 5 provides a basic idea of the eQADC signal
flow for the example.

Other features of the eQADC such as DMA, Queue, Interrupts, Calibration, etc., are not incorporated in this example.

Full accuracy is not possible because calibration is not implemented in this example. For more information, see Freescale
application note AN2989, "Design, Accuracy, and Calibration of Analog to Digital Converters on the MPC5500 Family."

eQADC single software scan

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 5

CFIFO0 Push Register

eQA D C

A N 0

40:1
M U X

A N 5

A N 39

•
•
•

•
•
•

•
•
•

A D C0
(B N 0)

CFIFO0

CFIFO0 Trigger M ode:
Single Scan, SW Trigger

A D C0_CR
A D C0_T SCR
A D C0_T B CR
A D C0_GCCR
A D C0_OCCR

Conversion
Comm ands

RFIFO0 Pop Register

RFIFO0

Conf iguration
Commands

•
•
•

Figure 5. eQADC single software trigger example

3.2 Design
The system clock is configured to 64 MHz. Since the ADC clock frequency must not exceed 15 MHz, we will configure the
ADC clock to 2 MHz using the system clock divide factor for ADC clock.

To achieve a 2 MHz ADC clock, we need to configure the ADC clock prescaler to 32 and the ADC ODD prescaler to 0
(64 MHz/32 = 2 MHz). Table 4 provides steps on how to setup the eQADC to perform a single software scan.

eQADC single software scan

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

6 Freescale Semiconductor, Inc.

Table 4. eQADC single software scan

Step Relevant bit fields Pseudocode

Initialize
ADC0

Determine Control Reg. value for ADC0: —

• Enable ADC0
• Prescaler = 32

ADC0 Control Reg = 0x800F

• ADC0_EN=1
• ADC0_CLK_PS = 0x0F

(div 32)

Send one write configuration command to
CFIFO0:

EQADC_CFPR[0] =
0x8080_0F01

• End of queue (only sending one
message here)

• Select ADC0 (buffer number 0)

• EOQ = 1
• BN = 0

Configuration command is Write (not Read) R/W = 0 (write)

ADC Control register value = 0x8001 ADC_REGISTER = 0x8001

ADC Control register address = 0x1 ADC_REG_ADDRESS = 1

Trigger CFIFO0 using single scan software
mode

(Send configuration command(s) to
ADC0’s registers)

MODE0 = 1, SSE0 = 1 EQADC_CFCR[0] = 0x0410

Wait for end of queue flag for CFIFO0 wait for EOQF0 = 1 wait EQADC_FISR[EOQ] = 1

Clear end of queue flag for CFIFO0 EOQF = 1 EQADC_FISR[EOQ] = 1

Send
conversion
command

Send one conversion command to CFIFO0:
• Convert channel 5
• Use result FIFO0
• Use ADC0 (BN0)
• Format is unsigned
• Set EOQ

EQADC_CRPR[0] =
0x8000_0500• CHANNEL_NUMBER =

 5
• MESSAGE_TAG = 0
• BN = 0
• FMT = 0
• EOQ = 1

Trigger CFIFO0 using single-scan software
mode

(Sends conversion command(s) to ADC
0)

MODE0 = 1, SSE0 = 1 EQADC_CFCR[0] = 0x0410

Read result Wait for RFIFO0 drain flag to set wait for RFDF0 = 1 Wait EQADC_FISR[RFDF]=1

Read result from Result FIFO Pop register 0 read EQADC_RFPR[0]

Clear flags for any subsequent use.

(Note: Flags are cleared by writing a 1.
Code here is for illustrative purposes,
but actually causes all flags in the FISR
register to clear because the compiler
will read the current value from the
register, OR in the “1”, and write back
the new value. Therefore existing flags
at 1 are cleared. The proper way to
clear a flag is to write to the entire
register.

EQADC_FISR [RFDF,
EOQF] = 1

eQADC single software scan

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 7

3.3 Code
Here is the eQADC initialization code to initialize the eQADC for a single software trigger mode using the ADC0, plus the
eQADC Read function to retrieve the result for the eQADC.

#include "mpc563m.h" /* Use proper include file such as mpc5510.h or mpc5554.h */

 static uint32_t Result = 0; /* ADC conversion result */
 static uint32_t ResultInMv = 0; /* ADC conversion result in millivolts */

void initADC0(void) {
 EQADC.CFPR[0].R = 0x80800F01; /* Send CFIFO 0 a ADC0 configuration command */
 /* enable ADC0 & sets prescaler= divide by 32*/
 EQADC.CFCR[0].R = 0x0410; /* Trigger CFIFO 0 using Single Scan SW mode */
 while (EQADC.FISR[0].B.EOQF !=1) {} /* Wait for End Of Queue flag */
 EQADC.FISR[0].B.EOQF = 1; /* Clear End Of Queue flag */
}

void SendConvCmd (void) {
 EQADC.CFPR[0].R = 0x80000500; /* Conversion command: convert channel 5 */
 /* with ADC0, set EOQ, and send result to RFIFO 0*/
 EQADC.CFCR[0].R = 0x0410; /* Trigger CFIFO 0 using Single Scan SW mode */
}

void ReadResult(void) {
 while (EQADC.FISR[0].B.RFDF != 1){} /* Wait for RFIFO 0's Drain Flag to set*/
 Result = EQADC.RFPR[0].R; /* ADC result */
 ResultInMv = (uint32_t)((5000*Result)/0x3FFC); /* ADC result in millivolts */
 EQADC.FISR[0].B.RFDF = 1; /* Clear RFIFO 0's Drain Flag */
 EQADC.FISR[0].B.EOQF = 1; /* Clear CFIFO's End of Queue flag */
 }

...

 initADC0(); /* Enable ADC0 only on eQADC */
 SendConvCmd(); /* Send one conversion command */
 ReadResult(); /* Read result from Trim Pot at Channel 17*/

...

4 eTPU2 PWM example

4.1 Description
This application uses the Set 1 eTPU2 functions from the Freescale website, www.freescale.com/etpu to build an image that
can be loaded to the eTPU2 RAM by the CPU.

In this application, only the eTPU2 PWM function on eTPU2_A channel 5 is used to control the LED brightness. This
channel is initialized at 1 kHz with a 25% duty cycle. The PWM duty cycle value is updated based on the trim pot value
acquired by the eQADC. Figure 6 illustrates the signal flow in the eTPU2 block and shows an example PWM output
(ETPUA5) from the eTPU2 block. The ETPUA5 is an external pin that needs to be configured to produce the desired PWM
output. Table 5 provides header pin assignment for ETPUA5 for the TRK and EVB boards.

For further information, see Freescale application note AN2864, "General C Functions for the eTPU2."

eTPU2 PWM example

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

8 Freescale Semiconductor, Inc.

Crystal
8 MHz

FM PL L T CR1 w i th
prescaler

of sysclk /2

eT PU A
Channel 5

PW M : ini ti al values:
Period: 1000 H z

w i th 16x
mul ti pl ier

64 MHz sysclk

D uty Cycle: 25%

eT PU A
Channel 2

eT PU A

T CR1 counts at 1 M H z
(avai l able to al l eT PU A channels

di v ided by 32

ET PU A 5

ET PU A 2

and optional l y to other eT PU s and eM IOS channels)

M PC5634M

Figure 6. eTPU2 set 1 PWM function example

Table 5. eTPUA5 pin assignment

Signal Function name SIU PCR number Package pin number Header pin

eTPUA5 eTPUA5 119 P45 TRK-J39

EVB-PJ9-6

4.2 Design
Timing resources used will include:

• sysclk = 64 MHz: assume 8 MHz crystal
• eTPU2 TCR1 clock: count at 1 MHz rate

4.2.1 Steps and pseudocode
Table 6 provides steps to initialize the eTPU2 and the function calls from the Set 1 PWM function example.

eTPU2 PWM example

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 9

Table 6. Initialization: eTPU2 using Set 1 PWM function example

Step Relevant bit field or
structure

Pseudocode / function

Init eTPU2 Configure eTPUA for:
• MISC not used
• eTPUA Input filter clock divided by

8
• eTPUA Channel input filter uses 3

samples
• eTPUA TCR1 = sysclk/2

prescaled by 32
• eTPUA TCR2 = sysclk/8

prescaled by 8
• eTPUB configurations as desired

etpu_config_t fs_etpu_init

Init
eTPUA[5]
PWM

• Channel = eTPUA[5]
• Priority = middle
• Frequency = 1000 Hz
• Duty cycle = 25%
• Timebase = TCR1
• Timebase frequency = 1 MHz

PA = 3

OBE = 1

ODE =

fs_etpu_pwm_init

Configure
pad

Configure Pad for eTPUA[5] output
• Pad Assignment = eTPUA[5]
• Output Buffer is enabled
• Open Drain is not enabled

SIU_PCR[119] = 0x0E00

Start timers Start all eTPU2 timers and eMIOS
timers

fs_timer_start

Update
eTPU2

• Channel = eTPUA[5]
• Frequency = 2000 Hz
• Duty cycle = Based on Trim Pot

Value
• Timebase = 1 MHz

fs_etpu_pwm_update

4.2.2 Files used in example
Table 7 is a summary of the files used for this project. All are available from the Freescale website, except for main.c and
main.h, which are listed in the next section.

Note that the eTPU2 C compiler is not needed to make this example because precompiled eTPU2 code images are available
on the Freescale website at www.freescale.com/etpu. However, all the source files used to build the set 1 ETPU2 functions
are available and may be useful for reference.

eTPU2 PWM example

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

10 Freescale Semiconductor, Inc.

Table 7. Files used in example

Provider Type File name Description

Freescale eTPU Set 1 library etpu_pwm.c Host application program
interface for pwm function

etpu_pwm.h Header file for pwm function

etpu_pwm_auto.h Parameters automatically
generated by eTPU compiler
for pwm function

etpu_set1.h Code image and globals
generated by eTPU compiler
for all of set 1 ETPU functions

eTPU utilities etpu_util.c

etpu_util.h

etpu_struct.h

Host utilities to initialize
eTPU, copy code image into
code RAM, etc.

4.3 Code

4.3.1 eTPU2 initialization code
This code shows the sequence of how the eTPU2 is initialized in C.

#include "mpc563m.h" /* Use proper include file such as mpc5510.h or mpc5554.h */
#include "mpc563m_vars.h" /* MPC563m specific variables */
#include "etpu_util.h" /* useful utility routines */
#include "etpu_set1.h" /* eTPU standard function set 1 */
#include "etpu_pwm.h" /* eTPU PWM API */

/* User written include files */
#include "main.h" /* include application specific defines. */

uint32_t *fs_free_param; /* pointer to the first free parameter */

...

 int32_t error_code; /* Returned value from etpu API functions */

 initSysclk(); /* Initialize PLL to 64 MHz */
 /* Initialize eTPU hardware */
 fs_etpu_init (my_etpu_config,
 (uint32_t *) etpu_code,
 sizeof (etpu_code),
 (uint32_t *) etpu_globals,
 sizeof (etpu_globals));
 /* Initialize eTPU channel ETPU_A[5] */
 error_code = fs_etpu_pwm_init (5, /* Channel ETPU_A[5] */
 FS_ETPU_PRIORITY_MIDDLE,
 1000, /* Frequency = 1000 Hz */
 2500, /* Duty cycle = 2500/100 = 25% */
 FS_ETPU_PWM_ACTIVEHIGH,
 FS_ETPU_TCR1,
 1000000); /* Timebase (TCR1) freq is 1 MHz */

eTPU2 PWM example

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 11

 SIU.PCR[119].R = 0x0E00; /* Configure pad for signal ETPU_A[5] output */
 fs_timer_start (); /* Enable all timebases */

...

This routine updates the PWM duty cycle based on the trim pot value acquired by the eQADC.

error_code = fs_etpu_pwm_update (5, /* Channel ETPU_A[5] */
 2000, /* New frequency = 2KHz */
 DutyCycle*100, /* New duty cycle*/
 1000000); /* Timebase (TCR1) freq = 1 MHz */

4.3.2 main.h listing
The main.h file includes the eTPU2 configuration structure used in the main program.

/* main.h based on gpio_example.h below */
 /***
 * FILE NAME: $RCSfile: gpio_example.h,v $ COPYRIGHT (c) FREESCALE 2004 *
 * DESCRIPTION: All Rights Reserved *
 * This file contains prototypes and definitions for the sample MPC5500 *
 * program using the the eTPU GPIO function. *
 ==
 * ORIGINAL AUTHOR: Jeff Loeliger (r12110) *
 * $Log: gpio_example.h,v $
 * Revision 1.1 2004/12/08 11:45:09 r47354
 * Updates as per QOM API rel_2_1
 *
 ..
 * 0.1 J. Loeliger 05/Sep/03 Initial version. *
 * 0.2 K Terry 29/Apr/04 mod'd for GPIO function test *
 * 0.3 Updated for new build structure. *
 * 0.4 G. Emerson 2/Nov/04 Added etpu_config_t definition *
 **/
 /* Rev 15/Mar/06 S. Mihalik : modified for eTPU PWM example */
 /* Rev 15/Mar/06 S. Mihalik : modified for eTPU PWM example */
 /* Rev 16/Jul/07 S. Mihalik : modified for 50 MHz sysclk, 1 MHz TCR1 */
 /* Rev 10/Aug/07 S. Mihalik: modified for 64 MHz sysclk, still 1 MHz TCR1 */

#include "etpu_util.h"

struct etpu_config_t my_etpu_config = {
 FS_ETPU_MISC_DISABLE, /*MCR register*/

 FS_ETPU_MISC, /*MISC value from eTPU compiler link file*/

 /*Configure eTPU engine A*/
 FS_ETPU_FILTER_CLOCK_DIV8 +
 FS_ETPU_CHAN_FILTER_3SAMPLE +
 FS_ETPU_ENTRY_TABLE,

 /*Configure eTPU engine A timebases*/
 FS_ETPU_TCR2CTL_DIV8 +
 (7 << 16) + /*TCR2 prescaler of 8 (7+1)*/
 FS_ETPU_TCR1CTL_DIV2 +
 31, /*TCR1 prescaler of 32 (31+1) applied to sysclk/2*/
 0,
 /*Configure eTPU engine B*/
 FS_ETPU_FILTER_CLOCK_DIV4 +
 FS_ETPU_CHAN_FILTER_3SAMPLE +
 FS_ETPU_ENTRY_TABLE,

 /*Configure eTPU engine B timebases*/

eTPU2 PWM example

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

12 Freescale Semiconductor, Inc.

 FS_ETPU_TCR2CTL_DIV8 +
 (7 << 16) + /*TCR2 prescaler of 8 (7+1)*/
 FS_ETPU_TCR1CTL_DIV2 +
 3, /*TCR1 prescaler of 4 (3+1)*/
 0
};

5 Main program

5.1 Description
As mentioned in the introduction, this example program uses the eQADC and the eTPU2 to control the brightness of an LED.
The brightness of the LED depends on the setting of the trim potentiometer. We will look at how this is done in the next
sections.

5.2 Design
Before we proceed to the example application, Table 8 shows the flow control of the main function.

Table 8. Main function flow control

Step Type Remarks

Initialize variables error_code int32_t eTPU API return error code

DutyCycle uint16_t This variable is passed to the
eTPU API to change the duty
cycle.

State init16_t Ensures that the duty cycle of
the PWM falls within a range
of 1:99 or 99:1.

Initialize the system clock initSysclk function call Set the system clock to
64 MHz.

Initialize eQADC initADC0 function call Enable the ADC0 only in the
eQADC.

Initialize the eTPU fs_etpu_init function call Enable the eTPU hardware.

Initialize the eTPU PWM
function

fs_etpu_pwm_init function call Initialize the eTPU channel 5
frequency at 1 kHz and set
duty cycle to 25%.

Set pad configuration SIU.PCR[119] 0x0E00 Configure pad for signal
ETPU_A[5] output.

While loop Loop forever.

Read trim pot SendConv function call Send a command to CFIF0 0
to read the trim pot potential
difference.

Table continues on the next page...

Main program

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 13

Table 8. Main function flow control (continued)

Process result ReadResult function call Read the eQADC result from
RFIFO 0 and store the result
in the variable Result (a
global variable defined in
main.c).

Update PWM duty cycle fs_etpu_pwm_update function call Update the new PWM duty
cycle.

Duty cycle setting control "if" flow control flow control Compute the PWM duty cycle
based on the result and
ensure that the duty cycle
falls within a range of 1:99 or
99:1. The duty cycle is
computed using this
equation: State = (16000 –
 (Result – 312) ÷ 160. The
value 312 removes the noise
and 16000 is the max return
value for the eQADC.

End while loop

We are now ready to run this example program.

5.3 Code
Here is the complete listing of main.c for this demonstration application.

#include "mpc563m.h" /* Use proper include file */
#include "mpc563m_vars.h" /* MPC563m specific variables */
#include "etpu_util.h" /* useful utility routines */
#include "etpu_set1.h" /* eTPU standard function set 1 */
#include "etpu_pwm.h" /* eTPU PWM API */
#include "stm.h"

/* User written include files */
#include "main.h" /* include application specific defines */

uint32_t *fs_free_param; /* pointer to the first free parameter */

void initSysclk (void) {

 FMPLL.ESYNCR2.R = 0x00000002;
 FMPLL.ESYNCR1.R = 0xF0000000 + 40; /* Set to clock 40MHz */

 while (FMPLL.SYNSR.B.LOCK != 1) {}; /* Wait for FMPLL to LOCK */

 FMPLL.ESYNCR1.R = 0xF0000000 + 64; /* Set to clock 64MHz */

}

static uint32_t Result = 0; /* ADC conversion result */
static uint32_t ResultInMv = 0; /* ADC conversion result in millivolts */

void initADC0(void) {
 EQADC.CFPR[0].R = 0x80800F01; /* Send CFIFO 0 a ADC0 configuration command */
 /* enable ADC0 & sets prescaler= divide by 32 */
 EQADC.CFCR[0].R = 0x0410; /* Trigger CFIFO 0 using Single Scan SW mode */

Main program

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

14 Freescale Semiconductor, Inc.

 while (EQADC.FISR[0].B.EOQF !=1) {} /* Wait for End Of Queue flag */
 EQADC.FISR[0].B.EOQF = 1; /* Clear End Of Queue flag */
}

void SendConvCmd (void) {
 EQADC.CFPR[0].R = 0x80001100; /* Conversion command: convert channel 17 */
 /* with ADC0, set EOQ, and send result to RFIFO 0 */
EQADC.CFCR[0].R = 0x0410; /* Trigger CFIFO 0 using Single Scan SW mode */
}

void ReadResult(void) {
 while (EQADC.FISR[0].B.RFDF != 1){} /* Wait for RFIFO 0's Drain Flag to set */
 Result = EQADC.RFPR[0].R; /* ADC result */
 ResultInMv = (uint32_t)((5000*Result)/0x3FFC); /* ADC result in millivolts */
 EQADC.FISR[0].B.RFDF = 1; /* Clear RFIFO 0's Drain Flag */
 EQADC.FISR[0].B.EOQF = 1; /* Clear CFIFO's End of Queue flag */ }

void main ()
{
 int32_t error_code; /* Returned value from etpu API functions */
 uint16_t DutyCycle;
 int16_t State;

 initSysclk(); /* Initialize PLL to 64 MHz */
 initADC0(); /* Enable ADC0 only on eQADC */

 /* Initialize eTPU hardware */
 fs_etpu_init (my_etpu_config,
 (uint32_t *) etpu_code,
 sizeof (etpu_code),
 (uint32_t *) etpu_globals,
 sizeof (etpu_globals));

 /* Initialize eTPU channel ETPU_A[5] */
 error_code = fs_etpu_pwm_init (5, /* Channel ETPU_A[5] */
 FS_ETPU_PRIORITY_MIDDLE,
 1000, /* Frequency = 1000 Hz */
 2500, /* Duty cycle = 2500/100 = 25%*/
 FS_ETPU_PWM_ACTIVEHIGH,
 FS_ETPU_TCR1,
 1000000); /* Timebase (TCR1) freq is 1 MHz */

 SIU.PCR[119].R = 0x0E00; /* Configure pad for signal ETPU_A[5] output */
 fs_timer_start (); /* Enable all timebases */

 error_code = fs_etpu_pwm_update (5, /* Channel ETPU_A[5] */
 2000, /* New frequency = 2KHz */
 6000, /* New duty cycle = 6000/100= 60% */
 1000000); /* Timebase (TCR1) freq = 1 MHz */

 DutyCycle = 1; /* Limit the duty cycle from 1% to 99% */
 State = 0; /* Initialized the state machine */
 while(1) /* Loop forever */
 {

 SendConvCmd(); /* Send one conversion command */
 ReadResult(); /* Read result */

 error_code = fs_etpu_pwm_update (5, /* Channel ETPU_A[5] */
 2000, /* New frequency = 2KHz */
 DutyCycle*100, /* New duty cycle*/
 1000000); /* Timebase (TCR1) freq = 1 MHz */

 State = (uint16_t)(16000 - (Result - 312));

 if (State <= 1)
 {
 DutyCycle = 1; /* force the duty cycle to 1:99 */
 }

Main program

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 15

 else
 {
 DutyCycle = (uint16_t)(State/160); /* Compute the duty cycle */
 if (DutyCycle > 99)
 {
 DutyCycle = 99; /* force the duty cycle to 99:1 */
 }
 }

 }
}

6 Running the demo project
Unzip the project zip file, LED_Dimmer.zip. The project contains the subdirectories shown Figure 7.

Figure 7. Subdirectories within the project folder

Double-click on the file "LED_Dimmer.mcp" to start loading the project with CodeWarrior, as shown in Figure 8.

Figure 8. CodeWarrior project file

After CodeWarrior has loaded the project, click on the icon "Make" to compile the project. Make sure the board is set up with
the P&E debugger attached. Click on the icon "Debug" to start loading the binary code to the board and execute the demo
program as shown in Figure 9.

Running the demo project

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

16 Freescale Semiconductor, Inc.

Figure 9. CodeWarrior IDE

Figure 10 and Figure 11 illustrate the output waveforms of the eTPU2 PWM signals at 99% and 1%, respectively. The PWM
duty cycle is controlled by the trim pot. However, the software limits the duty cycle of the PWM to a ratio that varies from
1:99 to 99:1.

Figure 10. Output waveform at 99% duty cycle

Running the demo project

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

Freescale Semiconductor, Inc. 17

Figure 11. Output waveform at 1% duty cycle

Running the demo project

Using eTPU2 and eQADC for PWM Control on the MPC563xM, Rev. 1, May 2011

18 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN4266
Rev. 1, May 2011

Information in this document is provided solely to enable system and sofware
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2011 Freescale Semiconductor, Inc.

	Introduction
	PLL: Initializing system clock — enhanced mode
	Description
	Design
	Design notes
	Clock configuration pin and register control bits
	PLL to system clock to peripheral clocks
	Enhanced PLL calculations — MPC563xM

	Code

	eQADC single software scan
	Description
	Design
	Code

	eTPU2 PWM example
	Description
	Design
	Steps and pseudocode
	Files used in example

	Code
	eTPU2 initialization code
	main.h listing

	Main program
	Description
	Design
	Code

	Running the demo project

