g |

rFreescale Semiconductor
Application Note

Document Number:AN4370
Rev. 1, 2012

USB DFU Bootloader for MCUs

by: Paolo Alcantara

1 Introduction

Microcontroller (MCU) firmware upgrades on the field
without using an external programming tool is a necessary
feature these days. For Freescale MCUs supporting a USB
device controller, the USB device firmware update (DFU)
class is the solution. The USB DFU bootloader requires only a
PC and a USB cable.

This document demonstrates how DFU fits in an embedded
device and gives examples of implementation using a PC with
Windows OS.

1.1 Audience

This document is intended to be used by all software
development engineers, test engineers, and anyone who is
implementing a USB DFU class or wants to use it as a
solution.

© 2012 Freescale Semiconductor, Inc.

w

~N O »n B

Contents
INtrodUCtION.eeiiiiiiiiieeeeeee e 1
Bootloader OVErview.............ouuveueeeeeeeeieeeieeiiiieneeenns 2

Bootloader Architecture and Boot

SEQUENCE. ...nviieiiiieiiei ettt e 4

Develop Applications with Bootloader..................... 6

Bootloader Example: Boot MQX.......ccccoveeniennnen. 13

Port the Bootloader to Other Platforms................... 29

CONCIUSION.eieiieiieieee e 33
»,

Z“ freescale

puuiloader Overview

1.2 Scope

This document presents information about USB DFU class implementation in Freescale MCUs such as SO8 (JM60), ColdFire
+(51JF), ColdFire (MCF52259) and Kinetis K and L family (K20, K40, K60, K70, LK25). Included within this document are
details on:

* Running an MQX RTOS application
* Running a bare metal software
* How USB DFU can be ported to other platforms

2 Bootloader Overview

The USB DFU bootloader provides an easy and reliable way to load new user applications to devices that have the USB DFU
bootloader preloaded.

After it is loaded, the new user application is able to run in the MCU. The USB DFU bootloader requires an application
running on a PC. The DFU PC application supports loading the firmware to the device by using specific requests as stated in
the USB DFU specification class.

The USB DFU bootloader is able to enumerate in two ways:

* USB composite device mode: Also known as run time mode. Formed by a DFU device plus another USB device class.
For this implementation, the human interface device (HID) mouse device is used to avoid increasing the bootloader
memory size. The MCU must be in the following conditions prior to enter to this mode:

e MCU doesn’t contain a valid firmware image or doesn’t contain firmware.
* An external action is applied to MCU, such as pressing a button during a reset event. This is dependent on the
USB DFU bootloader implementation.

* DFU device mode: Used when DFU is ready to upload or download firmware images by a request made from the USB

DFU PC application. Prior to this mode, the MCU was in USB composite device mode.

2.1 Bootloader example overview: ColdFire V2

A bootloader is a small application that is used to load new user applications to devices. Therefore, the bootloader needs to be
able to run in both the user application and bootloader mode. As an example, Figure 1 describes the memory map of the
ColdFire V2 bootloader implementation.

USB DFU Bootloader for MCUs, Rev. 1, 2012

2 Freescale Semiconductor, Inc.

Bootloader Overview

0x0000_0000 to 0x0000_03FF)
0x0000 0400 to 0x0000 0417
> Protected
0x0000 0420 to 0x0000 7FFF
J

0x0000 8000 to 0x0007 _FFFF

0x0008_0000 to Ox1FFF_FFFF Reserved

0x2000 0000 to 0x2000 O3FF

0x2000_0400 to 0x2000_05FF

0x2000_0600 to 0x2000_F7FF

il

0x2000_F800 to 0x2000_FFFF

Figure 1. ColdFire V2 bootloader memory map

After reset, the device attempts to run the user application. If the user application is not found or corrupted, the device
automatically runs into bootloader mode. If the application is valid and the user wants to run the bootloader program, external
intervention is required, such as pressing a specific key at reset time to force the device to enter bootloader mode. The
bootloader exception table is in flash memory area and used when bootloader runs. Thus, the bootloader cannot update its
exception table when loading a new user application. If the user application requires interrupts, the user application exception
table must be redirected to RAM.

The bootloader parses the user application image and flashes the image to flash memory in the user application area, as
shown in Figure 1.

As shown in Figure 1, the bootloader holds the flash memory region from 0x0000_0000 to 0x0000_7FFF (32KB). This flash
memory region needs to be program-protected to prevent corrupting the bootloader. The rest of flash memory, from
0x0000_8000 to 0x0007_FFFF (480 KB), is for the user application. After redirecting to RAM, the interrupt and exception
table are in area from 0x2000_0000 to 0x2000_03FF (1 KB) of RAM memory.

While the user application is running, it can use the whole RAM memory, regardless of RAM space needed by the
bootloader. Exception table space at RAM must not be considered for the user application’s data space, neither .data nor .bss
sections,by using the linker file.

The following table shows the space required by the DFU bootloader for different MCUs:
Table 1. DFU bootloader memory footprint

MCU Bootloader flash memory required
CFV1, ColdFire+ 40KB
CFv2 36KB

Table continues on the next page...

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 3

),
|
puulloader Architecture and Boot Sequence

Table 1. DFU bootloader memory footprint (continued)

MCU Bootloader flash memory required
Kinetis (L and K family) 40KB
S08 ~21KB

3 Bootloader Architecture and Boot Sequence

The following section provides an overview of USB DFU bootloader architecture and its software flow.

3.1 Architecture overview

The architecture of USB DFU bootloader is shown in the following figure:

UUSE DFUJ Boot Loader

Boot Loader Application

F
Boot Loader Driver

¥

Flash Driver

USE DFU Device Class

L J

USB Device Driver

USB Device Controller

F
¥

DFU PC Host

Figure 2. USB DFU bootloader architecture

The architecture of USB DFU bootloader contains the following functional blocks:

USB DFU Bootloader for MCUs, Rev. 1, 2012
4 Freescale Semiconductor, Inc.

g |

Bootloader Architecture and Boot Sequence

* Bootloader application: Controls the loading process. It uses specific requests in DFU class to receive and send
firmware image files, then uses the bootloader driver to load the user application’s files to and from the flash memory
of the device.

* Bootloader driver: Parses firmware image files and flash them to flash memory. The bootloader driver supports parsing
image files in CodeWarrior binary, S19, and raw binary file formats.

* Flash driver: Supports functions to erase, read, and write flash memory.

» USB DFU device class: Contains the API specified in DFU class.

» USB device driver and USB device controller: Communicate with the USB host (PC) through USB standard.

The USB DFU PC application supports features to download and upload firmware to and from the device.

3.2 Bootloader sequence

The bootloader is used to load an application that performs the product’s main function. At reset, the bootloader is executed
and does some simple checks to see if the application or bootloader mode can start. Once it’s in DFU bootloader mode, the
bootloader is able to receive requests from the USB DFU PC application. If the received request is to download firmware, the
DFU bootloader accumulates the data in a buffer. When the buffer is full, it starts parsing the buffer and downloads it to user
application region. See Figure 1 for details.

The flow of USB DFU bootloader is shown in the following flow chart:

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 5

h -

g |

vevelop Applications with Bootloader

Enurmerate as
DFU device

Jump to user antry
vechor

DFU Class specific
equests received?

Download firmmvana

¥
Accumulate blocks Rest of
in buffer h firmware 7
Y
Buffer full ?
Send data to host
Yes
Yes

¥

Farse buffer
Send sort frame

Download to flash
memery

Figure 3. USB DFU bootloader sequence

4 Develop Applications with Bootloader

The following section describes how to modify user applications to be used by the USB DFU bootloader.

4.1 Linker files modifications

Normally, an application will be located at the beginning of flash memory. However, the bootloader needs a flash memory
space, therefore the user application must be placed in the rest of flash memory. See Figure 1 for details.

Because of this, the user application linker file must be modified to locate the application at a specific memory region.

The following sections explain the linker file changes needed for ColdFire V1, ColdFire+, ColdFire V2-4, Kinetis (K and L
family), and SO8 MCUs.

USB DFU Bootloader for MCUs, Rev. 1, 2012

6 Freescale Semiconductor, Inc.

g |

Develop Applications with Bootloader

4.1.1 CFV1 linker file: ColdFire V1 and ColdFire+

A normal CFV1 linker file is shown as follows:

Sample Linker Command File for CodeWarrior for ColdFire MCF51JM128

Memory ranges

MEMORY
code (RX) : ORIGIN = 0x00000410, LENGTH = 0x0001FBFO
userram (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000

}

To run with the USB DFU bootloader, the user application must indicate that flash memory area starts at address
0x0000_A000. The modified linker file is as follows:

Sample Linker Command File for CodeWarrior for ColdFire MCF51JM128

Memory ranges

MEMORY
code (RX) : ORIGIN = 0x00002410, LENGTH = 0x00017BFO
userram (RWX) : ORIGIN = 0x00800000, LENGTH = 0x00004000

4.1.2 CFV2 linker file: ColdFire V2-4

A normal CFV?2 linker file is shown as follows:

Sample Linker Command File for CodeWarrior for ColdFire
KEEP_SECTION {.vectortable}

Memory ranges

MEMORY {
vectorrom (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
cfmprotrom (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000020
code (RX) : ORIGIN = 0x00000500, LENGTH = 0x0007FBOO
vectorram (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
userram (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00005C00

}

To run with the USB DFU bootloader, the user application must indicate that flash memory area starts at address
0x0000_9000. The modified linker file is as follows:

Sample Linker Command File for CodeWarrior for ColdFire
KEEP_SECTION {.vectortable}

Memory ranges

MEMORY {
vectorrom (RX) : ORIGIN = 0x00009000, LENGTH = 0x00000400
cfmprotrom (RX) : ORIGIN = 0x00009400, LENGTH = 0x00000020
code (RX) : ORIGIN = 0x00009500, LENGTH = 0x00077B00
vectorram (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
userram (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00005CO00

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 7

g |

vevelop Applications with Bootloader

4.1.3 Kinetis (K and L family) linker file

A normal Kinetis linker file is shown as follows:

MEMORY
vectorrom (RX) : ORIGIN = 0x00000000, LENGTH = 0x00000400
cfmprotrom (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000020
rom (RX) : ORIGIN = 0x00000420, LENGTH = 0x0001FBEO # Code + Const data
ram (RW) : ORIGIN = 0x00800000, LENGTH = 0x00004000 # SRAM - RW data

}

To run with the USB DFU bootloader, the user application must indicate that flash memory area starts at address
0x0000_A000. The modified linker file is as follows:

MEMORY

vectorrom (RX) : ORIGIN 0x0000A000, LENGTH = 0x00000400

cfmprotrom (RX): ORIGIN 0x0000A400, LENGTH = 0x00000020

rom (RX) : ORIGIN = 0x0000RA420, LENGTH = 0x00017BE0 # Code + Const data
ram (RW) : ORIGIN 0x00800000, LENGTH = 0x00004000 # SRAM - RW data

4.1.4 SO08 linker file

A normal SO8 linker file is shown as follows:

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in PLACEMENT below. */

Z _RAM = READ WRITE 0x00BO TO OxOOFF;
RAM = READ WRITE 0x0100 TO Ox1O0AF;
RAM1 = READ WRITE 0x1860 TO 0x195F;
ROM = READ ONLY 0x1960 TO OxFFAD;
ROM1 = READ ONLY 0x10BO TO Ox17FF;
ROM2 = READ ONLY OxXFFCO TO OXFFC3;

To run with the USB DFU bootloader, the user application must indicate that flash memory area ends at address OxABAS.
The modified linker file is as follows:

SEGMENTS /* Here all RAM/ROM areas of the device are listed. Used in PLACEMENT below. */

// Application Segments

Z_RAM = READ WRITE 0x00BO TO O0xOOFF;

RAM = READ WRITE 0x0110 TO Ox10AF;

RAM1 = READ WRITE 0x1860 TO O0x195F;

ROM = READ ONLY 0x1960 TO OxXABA5;

ROM1 = READ ONLY 0x10BO TO O0x17FF;

ROM2 = READ ONLY OxFFCO TO OxFFC3;
NOTE

For CFV1, CFV2, ColdFire+, and Kinetis(L and K family) linker files, the start of the
user application data space matches the start of MCU RAM. During exception table
relocation, explained in Exception table redirection, the declared RAM exception table
space is reserved by the compiler, and then no other data (.data nor .bss) shares this
space.

USB DFU Bootloader for MCUs, Rev. 1, 2012

8 Freescale Semiconductor, Inc.

Develop Applications with Bootloader

4.2 Exception table redirection

The exception vectors are located by default in flash memory and used by the bootloader, so the bootloader cannot update it
when loading new user applications.

If the user application needs interrupts, then the exception table must be redirected to RAM, except for SO8 MCUs.
The procedure to redirect the exception table to RAM is different for each MCU.

The following section describes how the exception table is redirected in a MQX and a bare metal user application.

4.2.1 MQX user application

The MQX RTOS can redirect the exception table to RAM by using the C-language macro MOX_ROM_VECTORS contained in
userconfig.h.

The following example source code shows how to assign the value of 0 to the MOX ROM_VECTORS macro.

#define MQX ROM VECTORS 0 //1=ROM (default), 0=RAM vector

NOTE
MQX RTOS only supports ColdFire, ColdFire+, and Kinetis MCUs. An 8-bit MCU must
use a bare metal application instead.

4.2.2 Bare metal user application

The following sections describe how to redirect exception table to RAM for ColdFire V1, ColdFire+, ColdFire V2-4, Kinetis,
and SO8 MCUs.

4.2.2.1 CFV1 MCU: ColdFire V1 and ColdFire+

CFV1 MCU has a CPU-register named Vector Base Register (VBR) containing the base address of the exception vector
table. This register can be used to relocate the exception table from its default position in the flash memory (address
0x0000_0000) to the base of the RAM (0x0080_0000).

Declaring an interrupt service routine (ISR) inside the application source code is different when using a bootloader.
The exception table redirection procedure can be summarized as follows:

Declare an exception table within the user application code area and assign ISRs at this space.
Reserve an exception table space at user application data area. It must be at the start of RAM space.
At runtime, copy the declared exception table to the reserved exception table space.

Write to VBR with the address of the reserved exception table which is the start of RAM space.

v

The new exception table must be declared as shown in the following lines. To add a new ISR, the address vector of the
dummy_ISR must be replaced with the name of the new ISR. The address of this new exception table must be part of the user
application code space. This example is declared at address 0x0000_A000. See Figure 1 for details. The new exception table
in the user application is declared as follows:

void (* const RAM Vector[]) () @0x0000A000=

{

(pFun) &dummy ISR, // vector 0 INITSP
(pFun) &dummy ISR, // vector 1 INITPC
(pFun) &dummy ISR, // vector 67 Vspil
(pFun) &dummy ISR, // vector 68 Vspi2
(pFun) &dummy ISR, // vector 69 Vusb

(pFun) &dummy ISR, // vector 70 VReserved70

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 9

g |

vevelop Applications with Bootloader

(pFun) &dummy ISR, // vector 71 VtpmlchO
(pFun) &dummy ISR, // vector 72 Vtpmlchl
(pFun) &dummy ISR, // vector 73 Vtpmlch2

Next, the declared exception table (RAM_Vector) must be copied to the base of RAM at runtime. The following source code
performs this task:

pdst=(dword) &New RAM vector;//0x00800000;//RAM base address
psrc= (dword) &RAM_ vector;

for (i=0;i<111;i++,pdst++,psrc++)//112 exceptions

*pdst=*psrc;

Finally, the following software is used to redirect the exception table to RAM with address 0x0080_0000:

asm (move.l #0x00800000,d0) ;
asm (movec doO,vbr);

4.2.2.2 CFV2 MCU: ColdFire V2-4

Similarly to CFV1, the exception table must be copied from the user application space to RAM at runtime. The following
source code shows the initialize exceptions function which copy from user application space (FLASH) to RAM base
address:

void initialize exceptions (void)

{
/*
* Memory map definitions from linker command files used by mcfbxxx startup

*/

register uint32 n;

/*
* Copy the vector table to RAM
*/
if (_ VECTOR_RAM != (unsigned long*) vect)
{
for (n = 0; n < 256; n++)
___VECTOR_RAM[n] = (unsigned long) vect[n];

mcf5xxx wr vbr((unsigned long) VECTOR RAM) ;

}

Using CFV2 version, Freescale USB Stack with PHDC v3.0 also supports the initialize exceptions function to copy
the interrupt exception table to the specified area in RAM.

void initialize exceptions (void) ;

The initialize exceptions function copies the interrupt vector table to the RAM area at _ VECTOR_RAM address.
This address needs to be defined at linker file.

If using USB Stack with PHDC v3.0 as the user application project template, the initialize exceptions function is
called at startup by default.

4.2.2.3 Kinetis (L and K family) MCU

For Kinetis MCU, the SCB_VTOR register contains the base address of the exception table. To redirect the exception table,
the exception table must be copied to RAM. Then SCB_VTOR must be written with the value of the copied address.

USB DFU Bootloader for MCUs, Rev. 1, 2012
10 Freescale Semiconductor, Inc.

N

4
4\ . ___4

Develop Applications with Bootloader

The following steps explain in more detail how the redirection must be performed in Kinetis.

1. Declare a ROM area to store the exception table (linker file).

.interrupts

{
VECTOR_ROM = .;
* (.vectortable)
= ALIGN (0x4);
} > interrupts

2. Copy the exception table from default user application code space to RAM address, aligned to 128 bytes.

extern uint 32 VECTOR_RAMI[] ;
extern uint 32 VECTOR_ROMI[] ; //Get vector table in ROM

uint 32 1i,n;
/* Copy the vector table to RAM */
if (VECTOR_RAM != VECTOR_ROM)

for (n = 0; n < 0x410/4; n++)
VECTOR RAM[n] = VECTOR ROM[n] ;

}

/* Point the VTOR to the new copy of the vector table */
SCB_VTOR = (uint_ 32) VECTOR_RAM;

4.2.2.4 S08 MCU

The MC9S08 core cannot re-direct the exception table to the RAM like ColdFire or Kinetis. Instead, the bootloader points to

the exception table of the application at a re-directed exception table in the user application space.

The re-directed exception table is stored at a specific address. The user application must declare a function pointer to the

exception table at the specific address to implement interrupts.

For the DFU bootloader, the array UserJumpVectors is the function pointer to the exception table, and it starts at address

VectorAddressTableAddress, which is 0OxABAG6 according to S08 specifications.

// User Interrupt Jump Vector Table

volatile const Addr UserJumpVectors [InterruptVectorsNum]@ VectorAddressTableAddress

Dummy ISR, // 0 - Reset

Dummy ISR, // 1 - SWI

IRQ ISR, // 2 - IRQ

Dummy_ISR, // 3 - Low Voltage Detect
Dummy ISR, // 4 - MCG Loss of Lock
Dummy ISR, // 5 - SPI1l

Dummy ISR, // 6 - SPI2

USB_1ISR, // 7 - USB Status

Dummy ISR, // 8 - Reserved

Dummy ISR, // 9 - TPM1 ChannelO

Dummy ISR, // 10 - TPM1 Channell
Dummy ISR, // 11 - TPM1 Channel2
Dummy ISR, // 12 - TPM1 Channel3
Dummy ISR, // 13 - TPM1 Channel4
Dummy ISR, // 14 - TPM1 Channel5
Dummy ISR, // 15 - TPM1l Overflow
Dummy ISR, // 16 - TPM2 ChannelO
Dummy_ ISR, // 17 - TPM2 Channell
Dummy ISR, // 18 - TPM2 Overflow
Dummy ISR, // 19 - TPM1 SCIl1 Error
Dummy ISR, // 20 - TPM1 SCI1 Receive
Dummy ISR, // 21 - TPM1 SCI1 Transmit
Dummy ISR, // 22 - TPM1 SCI2 Error
Dummy ISR, // 23 - TPM1 SCI2 Receive
Dummy ISR, // 24 - TPM1 SCI2 Transmit
Kbi_ISR, // 25 - TPM1 KBI

Dummy ISR, // 26 - TPM1 ADC Conversion
Dummy ISR, // 27 - TPM1 ACMP

USB DFU Bootloader for MCUs, Rev. 1, 2012

{

Freescale Semiconductor, Inc.

11

g |

vevelop Applications with Bootloader

Dummy_ ISR, // 28 - IIC
Timer_ISR, // 29 - RTC

The Addr is function pointer type as follows:
typedef void (* Addr) (void) ;

The bootloader uses the array BootIntVectors in the file Redirect_Vectors_S08.c to load the interrupt vector table in the
bootloader flash.

volatile const Addr BootISRTable [InterruptVectorsNum] = {
Dummy ISR, // 0 - Reset
Dummy_ ISR, // 1 - SWI
Dummy ISR, // 2 - IRQ
Dummy ISR, // 3 - Low Voltage Detect
Dummy ISR, // 4 - MCG Loss of Lock
Dummy_ ISR, // 5 - SPI1
Dummy ISR, // 6 - SPI2
USB_1ISR, // 7 - USB Status
Dummy ISR, // 8 - Reserved
Dummy_ ISR, // 9 - TPM1 ChannelO
Dummy ISR, // 10 - TPM1 Channell
Dummy_ ISR, // 11 - TPM1 Channel2
Dummy ISR, // 12 - TPM1l Channel3
Dummy_ ISR, // 13 - TPM1 Channel4
Dummy ISR, // 14 - TPM1 Channelb
Dummy_ ISR, // 15 - TPM1l Overflow
Dummy ISR, // 16 - TPM2 ChannelO
Dummy_ ISR, // 17 - TPM2 Channell
Dummy ISR, // 18 - TPM2 Overflow
Dummy_ ISR, // 19 - TPM1l SCIl1 Error
Dummy ISR, // 20 - TPM1 SCI1 Receive
Dummy_ ISR, // 21 - TPM1l SCI1 Transmit
Dummy ISR, // 22 - TPM1 SCI2 Error
Dummy_ ISR, // 23 - TPM1l SCI2 Receive
Dummy ISR, // 24 - TPM1 SCI2 Transmit
Dummy ISR, // 25 - TPM1 KBI
Dummy ISR, // 26 - TPM1l ADC Conversion
Dummy_ISR, // 27 - TPM1 ACMP
Dummy ISR, // 28 - IIC
Dummy_ ISR, // 29 - RTC

}i

The file Redirect_Vectors_S08.c contains functions to determine whether to call interrupt functions of bootloader or user
application. When an interrupt occurs, the associated interrupt function in file Redirect_Vectors_S08.c is called, and then the
function determines whether to call interrupt function of bootloader or user application.

extern uint_ 8 boot mode;
/* VectorNumber Vswi */
interrupt VectorNumber Vswi vectorl (void)

{ if (boot_mode == BOOT MODE)
BootISRTable [VectorNumber Vswi] () ;
else
AppISRTable [VectorNumber Vswi] () ;

}

For a new application, the files Bootloader.h and Vectortable.c must be added to the application project. Then, load the array
UserJumpVectors in Vectortable.c with the proper application ISRs.

USB DFU Bootloader for MCUs, Rev. 1, 2012

12 Freescale Semiconductor, Inc.

Bootloader Example: Boot MQX

5 Bootloader Example: Boot MQX

The following section explains how to use the USB DFU bootloader with a MQX boot example. The example uses an
MS52259EVB board and CodeWarrior version 7.2.

5.1 Preparing the setup

The DFU bootloader requires a software and hardware configuration. The following sections describe the steps to run the
bootloader example in MQX.

5.1.1 Software requirements
The following software is required to run the DFU application:

* DFU PC host application
¢ CodeWarrior version 7.2
e Serial terminal

Details about how to use these PC applications are explained in the following sections.

5.1.2 Hardware setup
The following hardware is required:

* A PC running Windows XP, Windows Vista, or Windows 7 in 32-bit or 64-bit edition
* A M52259EVB board and +5V power supply
¢ Two USB cables:
« USB 2.0 A-B
e USB 2.0 A to miniB
* A DB9 cable or USB2SER converter

The hardware must be configured as follows:

Connect the power supply to the board.

Connect the USB debug port of the board to the PC using the USB 2.0 A-B cable.

Connect the MCF52259EVB COMI1 port to the PC with a DB9 cable or using a USB2SER converter.
Turn the board power on.

v

5.2 Preparing the firmware image file
The following steps must be followed to generate a valid MQX image for the USB DFU bootloader:
1. Set MQX_ROM_VECTORS to 0 in user_config.h file to use the exception table from RAM

#define MQX ROM VECTORS 0
2. Build libraries of MQX by running Freescale MQX 3.7.0\config\m52259evb\cwcf72\build_m52259evb_libs.mcp

projects. If using CW10.x, build each library individually (bsp_m52259evb, psp_m52259vb, etc) as listed in the next
figure.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 13

puulloader Example: Boot MQX

build_m52259evb_libs.mcp 3]

| ® ALLLBS "Ry &% > [0
Fles | Link Order | Targets |
¥ File Code | Data ¥ % -
B bsp_m5225%vh.mcp nfa nfa * = -
i psp_m52259%evb.mep n'a nla » =l
mfs_m5225%vb. mep nfa nfa * =
itcs_m522599evh. mop n'a nfa =
B usb_hdk_m5225%vb.mep n'a nfa * =
B usb_ddk_mS52259vb.mep nfa nfa e =
shiell_m5225%vb.mcp n'a nfa * =
7 fies 0 0 ./

Figure 4. Build MQX libraries

3. Create an MQX application. As a test for this section, project “Freescale MQX 3.7.0\mfs\examples\mfs_usb” is used.
4. Select “Flash Debug” or “Flash Release” target.

USB DFU Bootloader for MCUs, Rev. 1, 2012

14 Freescale Semiconductor, Inc.

Bootloader Example: Boot MQX

mifs_usb _m52259%evb.mcp

|ﬂ Int Flash Debug jﬂ]# L BV
Files | Link Order | Targets |

¥ File Code Data ¥4 -
=3 Linker Filez 1] 0= i
B extrorannlcl hi'a n'a =
" B intiash.lci nia n'a =
¥ [+ (] MO Libranes 0 1 =
& [+ {1 MFS Libraries] 1 =l
¢ [+ (] LISE Host Libearies 0 o - =
& [+ {1 Shell Libraries o 1 =
¥ [+ (] Source 0 0D+ » =

23 files 0 0 4

Figure 5. MQX example
5. Modify the intflash.lcf linker file to move the code section (vectorrom, cfmprotrom and rom memory segments) to the
user application region of the USB DFU bootloader. The user application region starts at 0x0000_9000.

vectorrom (RX): ORIGIN = 0x00009000, LENGTH = 0x00000400

cfmprotrom (RX) : ORIGIN = 0x00009400, LENGTH = 0x00000020

rom (RX) : ORIGIN = 0x00009420, LENGTH = 0x00075BEO # Code+Const
data

6. Configure project to generate s19 and binary image files. These are valid file formats for the USB DFU PC application.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 15

PR 4

puulloader Example: Boot MQX

:m Int Flash Debug Settings [mfs_usb_m52259%evb.mcp]

[§ Target Settings Panels —I [§ ColdFire Linker

=~ Language Settings -) . e
. C/C++ Language ¥ Generate Symbolic Info [Disable Deadstipping
- C/C++ Prepiocessor v Store Full Path Names ¥ Generate ELF Symbol Table

C/C++ Warnings Iv Generate Link Map [Generate Waming Messages
ColdFire Assembler I~ List Unused Objects b 1 Mafit

- ;E:'JdI= Eei:'neratlun ¥ Show Transitive Closure
- ColdFire Processor
" Global Optimizations | I~ Always Keep Map | Max S-Record Length: IBD

= Linker IV Generate S-Record File EOL Character: I—_l"
.- ELF Disassembler ’J__Eﬂnﬂale_umnaﬂﬂ_‘ pos
- ColdFire Linker Iv iGenerate Binary Image: Max Bin Record Length: | 252
‘- Librarian -_

- o =
" Custom Keywords Force Active Symbols:

=- Debugger -
~ Debugger Settings
-~ Remote Debugging
- CF Debugger Setti.. |

Factory Settings Revert Import Panel... | Export Panel...
OK Cancel | Apply

Figure 6. Options to generate s19 and binary firmware image
7. Build user application. After build process, the m52259evb folder contains two valid file formats:

¢ intflash_d.elf.S19
¢ intflash_d.elf.bin

and Folder Tasks

er Places

B intflash_d.elf

=) intflash_d.elf .bin
=) intflash_d.elf .rbin
intflash_d.elf.519
[intflash_d.elf. xMap

3 C:\Program Files\Freescale\Freescale MQX 3.7.0\mfs\examplesimfs_usblcwcf72\mS225%vh

Figure 7. Firmware image files

The generated s19 file has the start address at 0x0000_9000.

8. The s19 and binary files from previous step will be used in Downloading firmware.

USB DFU Bootloader for MCUs, Rev. 1, 2012

16

Freescale Semiconductor, Inc.

g |

Bootloader Example: Boot MQX

5.3 Building the application

1. Open the USB DFU bootloader project for the M52259EVB platform on CodeWarrior version 7.2 IDE and build it.
The mcp file is found at the following path:
* \Source\Device\app\dfu_bootloader\codewarrior\cfv2usbm52259
* Or using CW10.2: Source\Device\app\dfu_bootloader\cw 10\cfv2usbm52259
2. Load the project to MCF52259 flash memory by using CodeWarrior Flash Programmer utility.

5.4 Running the application

The following section describes how to install the USB DFU bootloader device in a PC running Windows OS.

The test firmware used in section 5.2 uses the serial terminal to communicate with the user. Open a Serial Console at
115.2Kbps 8-N-1 No flow control.

5.4.1 Driver installation

The USB DFU PC Application uses WinUSB 2.0. WinUSB is a generic USB driver provided by Microsoft. To install the
USB DFU bootloader device driver:

1. Reset the M52259EVB and connect to the PC by using USB 2.0 A to miniB cable. Direct connection of the USB cable
to the PC’s USB port is strongly advised. Windows asks for the USB driver to use with the new device. A Found New
Hardware window appears as shown in next figure.

1) Found New Hardware
DFU DEMO

Figure 8. Found new hardware

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 17

g |

puulloader Example: Boot MQX

Found Hew Hardware Wizard

This wizaed heles vouingtall soltveate for

DFU DEMOD

‘] IF your hardware came with an installation CD
e or Noppy disk, insel it now.

What do pou want the wizard to do?

() Install the: sofbware automaticaly (R ecommended)
(@ 1Instal irom a kst or specific location [Advanced]

Chick Mext to continue.

| <Back || Hed> || Cancel |

Figure 9. Found new hardware wizard
2. Select “Install from a list or specific location (Advanced)” option and click on the “Next” button. The next figure
shows the current message shown by Windows. Select “Don’t search, I will choose the driver to install” option and

click “Next.”
Found New Hardware Wizard

Please choose your search and installation options.

() Seach fior the best diver in these locations.

|Jze the check boxes below ba bmit of expand the defaul seaich, which mchedes local
paths and removable media. The bast derver fourd will be installed.

%) Dont seach. | will choose the divver to install

Choose this option o select the device diver from a it Windows does not guarantes that
thee: drrver wou choose will be the best match for your handware,

[< Back || Mest »][Cancel]

Figure 10. Search and installation options
3. The Hardware Type window appears. Select “Show All Devices” option, and click “Next” button. Select “Have
Disk...” button as soon as “Select device driver window” appears.

USB DFU Bootloader for MCUs, Rev. 1, 2012

18 Freescale Semiconductor, Inc.

h

Bootloader Example: Boot MQX

Found Hew Hardware Wizard

Hardware Type.

Select a hardware type, and then cick Next

Commicn hardwade [ypes
Shosy &l Devvices L l

e 1334 Debugger Deviee
it B1883 Davice Clazs

e 80T Device Class

H Balteries

€D Bluetooth Rados
i Computer
@ DFU Devices

[<Back || New> | [Cancel

Figure 11. Hardware type

Found Mew Hardware Wizard

Select the device driver pou want to install for thiz hardware,

Seldect the manufacturer and model of yow hardware device and then click Hext, If pou
hawve a disk that contaimns the dirver you want bo metall, chick Have Disk.

Manufachures Al Model A

(Standard CD-AOM diives) 5 CD-ROM Diive (force CODA accurate)

(Standaid IDE ATA/ATAPI ol | | KD ROM Diive ficice (DDA)]
|Stardard keybosrds] = ive [foece inaccuratel

[Standard syelem devices) @ EF CDBOM Diive [force IMAP! disable]
a 5 | ¥ CO-ROM Diive (IMAP! setings 0.1)
| ol e emmn o s mm e o P

T —

Tl e wibwp dibver signing B st

bt

[< Back ” Mt][Cancel J

Figure 12. Select device driver

4. Navigate to the INF file located at \DFU_winusb_driver and choose DFU_Device_Runtime.inf file. Click “Open,” then
click “Next” to install the USB driver.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 19

h

puulloader Example: Boot MQX

Locate File
Look ine | £ DFU_winnssh_driveer
C)amded
Liabd
6
“HDFU_Device.inf

g DFU_Desice_Runtime.inf

A

File name: .DFLI_Demca_FI uritime. inf v

Files of ype: Cancel =
T gy e

Figure 13. Selecting the driver
5. Once the driver is installed, Windows recognizes it as a composite device made of a DFU class and HID mouse, as
explained in Bootloader Overview.

To verify the USB installation, open the Windows device manager. The “Device firmware upgrade” (DFU) and “USB
Human Interface Device” entries are displayed by the device manager in the following figure.

- § DFU Devices

<~ W Device Firmware upgrade_—>
+ < Disk drives

+ @ Display adapters

- (&9 Human Interface Devices

<" [USB Human Interface Device—>

Figure 14. DFU device and Human Interface Device in device manager
6. Open the USB DFU PC application. The PC application automatically recognizes that the run-time mode (USB
composite device) is running as shown in the following figure. Click “Enter DFU mode” button to switch the device to
DFU mode.

USB DFU Bootloader for MCUs, Rev. 1, 2012

20 Freescale Semiconductor, Inc.

h

Bootloader Example: Boot MQX

DFU Demo 3]

Eile
USE Device _
. Device fimware upgrade - BUNTIME Mode Enter DFU mnde/P
Device: Device firmware upgrade - RUNTIME Mode Stakus: IDLE Device opened .

Figure 15. Device firmware upgrade - runtime mode
7. Unplug and plug the USB cable to get a USB bus reset.The M52259EVB USB device will enter in DFU mode.
8. When DFU mode is entered, Windows OS will ask for driver again. Follow steps 2- 4 to install the USB DFU driver,
this time selecthing DFU_Device.inf as shown in the next figure.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 21

puulloader Example: Boot MQX

Found New Hardware Wizard

Select the device driver you want to install for thiz hardware.

=~ Locate File

L4 DF_Device.inf

% DFU_Device_Runtime.inf

File name: DFU_Device.inf v

File of lype: | Setup Information [inf) _

Figure 16. Install driver for DFU mode
9. Once the driver for DFU mode is installed successfully, the USB DFU device bootloader is in DFU mode and ready to
use. The USB DFU PC application is shown as follows:

USB DFU Bootloader for MCUs, Rev. 1, 2012
22 Freescale Semiconductor, Inc.

b -

4
Bootloader Example: Boot MQX

DFU Demo 5]
File
USE Devica
Desvice fmware upgrads
‘ Drownload Firmwate L D
Download Finmware from a File to the Device
‘ Upload Firmware
Upload Firware from the Device to a File
Lo e folcber
C:\loglie.t E]
Data Recened
Azca Hexa
Device: Device Firmware upgrade Statuc: IDLE Device opened .-
Figure 17. DFU device demo in DFU mode
NOTE
The use of a USB hub or docking station for the USB DFU device bootloader is not
recommended.

5.5 Downloading firmware

The following steps must be followed to download the firmware through the USB DFU bootloader.

1. At this point, Driver installation must have already been completed. Using the USB DFU PC Application, select a
firmware image file for download to the device as shown in Figure 21. The files generated in Building the application
can be used for this step.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 23

puulloader Example: Boot MQX

DFU Demo %]
File
USE Device
Device firmware upgrade v
Open EJ@
Look in: | £ MGX_MFS_USB_Shel v 02 @

] intflash. elf bin
@ = intflash.elf 519
MyRecent | intflash_d.elf.bin
Documents | = intflash_d.elf.519

J @

Desktop

2

My Documents

8

My Computer

£ <

-

File name: [intﬂash elf.bin b]
1 MyNewok | Fiesofype | Alfie (") v 5

Figure 18. Choosing firmware file
2. When a S19 file is selected, the content of the firmware file is displayed in ASCII and hexadecimal (HEX) format. If a
CodeWarrior binary format is selected, the content of the firmware is only displayed in hexadecimal (HEX) format, as
shown in next figure.

USB DFU Bootloader for MCUs, Rev. 1, 2012

24 Freescale Semiconductor, Inc.

PR 4

Bootloader Example: Boot MQX

Eile
USB Device

Device firmware upgrade

Dowrload Firmware

|E:\.Emt_loader'\VSS\jmage_ﬁles\MSD_Device_huntlnader"-.SﬂSE] B
Download Firmware from a File to the Device

Upload Firrnware

Upload Firmware from the Device to a File

Logq file folder

C:\logie.tst (-]

Data Received
Ascii Hexa
/00 009000000000 FC2000FB FFOD01E31C A
O001E37CO0ME37CO0DI E37C 0001 E3VC
00N E37CO0ME37CO0OM E37C OO0 E3VC
00OTE37CO0ON E37CO0D E37CO0ON E37C
D001 E37CO00NE37CO0D E37CO001 E3VC
O00TE37CO0MME37CO0DI E37CO0ON E3VC
00T E37CO0ME37CO0M E37C 000N E3VC
O00TE37CO0MME37CO0M E37CO0ON E3VC
OD01E37CO00NE37CO0DI E37CO001E3VC
O001E37CO0MME37CO0DI E37C 000N E3VC
00T E37CO0ME37CO0OM E37C OO E3VC
00OME37CO0ON E37CO0DI E37C 0001 E3VC
D0OTE37CO00N E37CO0DN E37CO001E37C &
Device: Device firmware upgrade Status: IDLE Device opened .:

Figure 19. Content of the firmware is displayed
3. Click “Download Firmware” button. The firmware will be downloaded to the device.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc.

PR 4

puulloader Example: Boot MQX

DFU Demo X
Eile

USE Device

Device firmware upgrade v|

|E:'kBn-at_lnaderwSSkimage_ﬁles\.hfl50_Device_hcntlnader\5225$] E]

Download Firmware from a File to the Device

Upload Firware from the Device to a File

Log file folder
[C:\logfile.tx (-]
Data Received
Ascii Hexa
| ‘000090000000 00FC2000FB FFO001E31C A
0001 E37YCOOME37CO0DI E37C OO E3TC
0O E37COOME3I7CO0OO E37CO0M E37C
D0 E37FCOOMEIZCO0M E37FCOOM E3TFC
00O E37FCOOMEI7CO0MI E37COOMM E3TC
0001 E37YCOOME37CO0DI E37C OO E3TC
0O E3VCOOME3IZCO0OO E37YCO0M E3VC
OO EI7FCOOMEIZCODM E37FCO0M E3TC
D00 E37FCOOME37CO0OI E37FCOOMM E3TC
0001 E37YCOOME3ZCO0DN E37CO0OM E3TC
0OONE3VCOOME3IZCO0OM E37YC OO0 E37C
DD EI7FCOOMEIZCO0M E37FCO0M E3TC
00O E37FCOOMEI7CODOIE37CO0ODI E3TC v
Device: Device firmware upgrade Status: 7824 bytes written. Device opened .

Figure 20. Firmware is downloaded
4. Once the download firmware process is completed, the USB DFU PC Application shows the final status of the
download process.

USB DFU Bootloader for MCUs, Rev. 1, 2012

26 Freescale Semiconductor, Inc.

) 4

Bootloader Example: Boot MQX

DFU Demo

Eile
USB Device

‘ Device firmware upgrade v |

[E:\Bunt_hadchES\i‘nage_fies\HSD_Devinc_hmﬂuadmkEEEHE | []
Download Firmware from a File to the Device

Upload Firmware from the Device to a File

Log file folder
| C:\ogfile.tt |

Data Received

Asci

x|

2000FBFFOOOTESIC A
1TE37C0001E3VC

1E37C00M E
1E37C00M
1E37C0001
1E37C00M
E37C00OM

Firmware has been downloaded successfully!

0001 E37C00

dadddddsdddad

000
000 3
000 3
000 3
000 3
000 3
000 3
000 3
000 3
0o o 3
000 X
000 3

slzlzlzlzlzlzlalzlzls

E

E

E
1 E
1 E
1 E
1 E
1 E
1 E
1 E

Device: Device firmware upgrade Status: Download finished, Device

I

Figure 21. Download is completed
5. As an additional verify process, a log file contains the events which occurred during the download process.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc.

27

h

puulloader Example: Boot MQX

Bl logfile.txt - WordPad
File Edik Wiew Insert Format Help

hed SR A @ "B B

downloading. ..

state = ST _DFU_IDLE

state = ST _DFU_DNLOAD SYNC
state = ST_DFU_DNBUSY

state = ST_DFU_DNLOAD IDLE
state = ST _DFU_MANIFEST SYNC
Manifescing...

state = ST _DFU_IDLE

116756 bytes written.
Download finished. 7

For Help, press F1

Figure 22. Content of log file

6. Press reset key on board to run the user application. The serial terminal shows a menu sent by MQX user application.

& COM_115200 - HyperTerminal M=1[E3

Fla Edt Yiew Call Transfer Help
D& &35 D F
Shell (build: May 2& 2011)
Copyright (c) 2008 Freescale Semiconductor:
shell>
shell>
£ > -
Connected 2:10:20 futo detect 115200 8-M-1 1 UM

Figure 23. User application running

NOTE
If the USB cable is unplugged during the download process, The USB DFU PC
application will ask to continue the download process whenever the USB cable is re-
plugged, as shown in Figure 24.

USB DFU Bootloader for MCUs, Rev. 1, 2012
28 Freescale Semiconductor, Inc.

Port the Bootloader to Other Platforms

Eile
USE Device
l Device firmware uparade W
i b |E:kBmt_IoaderWSS\imaga_lﬂes\MSD_Dm‘ice_houllnader'uSZEE ‘ | I
Download Firmware from a File to the Device
Upload Firmware | ‘
Upload Firmware from the Device to a File
Log file folder
[C:\oge.txt (-]
Data Received
Ascil Hexa
0000DS000000000DFC2000FEFFOOM E3IC &
) MME37CO0001E37CO001E3VC —
Device attached E37CO00ME37C 000 E37C
J7CODMME37CO0ME3FC
J7COD0ME3TCO0ME3ZC
J7COD0ME37CO0OE3ZC
J7CO00ME37CO00 E37C
J7CODME37CO0ME3ZC
J7COD0ME37CO0ME3ZC
J7CO00ME37CO0ME3ZC
000TE37CO0ME37CO001E37C00M E37C
O0OME37CO0ME37CO0ME37CO0M E3YC
OO E37CO0ME37CO00NE37CO0ME3FC »
Device: Device firmware upgrade Status: IDLE Device opened .-

Figure 24. Resuming download

6 Port the Bootloader to Other Platforms

The following section explains how to develop new USB DFU bootloader applications in other platforms. The USB DFU
bootloader is developed over the “Freescale USB Stack with PHDC v3.0” software.

6.1 USB DFU bootloader file structure

The following figure shows the folder structure of the DFU source code:

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 29

b -

rurn the Bootloader to Other Platforms

B 1) ANxoxSW .n.- .__j codewarrior
\LJ) DFU_PC_Demo Cowi10
®) DFU_winusb_driver I flash_driver
=) image_files Diar_ew
= | MSD_Device_bootloader ﬂ Boot_loader_task.c
®) 52259EVE \h] Boot_loader_task.h
®) me0 \h] Bootloader.h
®) M128 €] dfu_mouse.c
®) ks0 h] dfu_mouse.h
= i) Source EI Loader.c
= I Device] Redirect_Vectors_S08.c
= I app E‘I usb_descriptor.c
@) common ilusb_descrlptor.h

== \h] user_config.h

&) codewarrior
@ i) cwlo

) flash_driver
@) iar_ew

) source
Figure 25. USB DFU bootloader file structure

The top-level folders contain:

* DFU_PC_Demo: contains the USB DFU PC application

* DFU_winusb_driver: contains the USB drivers needed by Windows OS

» image_files: contains examples firmware image files for MC9S08IM60, MCF51JM 128, MCF52259, and K60 MCUs
¢ Source: contains USB DFU bootloader source code

The dfu_bootloader folder contains the following folders:

» codewarrior: contains CodeWarrior v6.3 and v7.2 projects
e cwl0: contains CodeWarrior 10.2 projects

* ijar_ew: contains IAR projects

e flash_driver: contains flash driver for supported MCUs

The following files are part of the dfu_bootloader folder:

¢ Boot_loader_task.c: contains bootloader general tasks

* Boot_loader_task.h: includes function prototypes

* Bootloader.h: includes memory map definitions for ported boards to DFU bootloader

* dfu_mouse.c: contains DFU application and mouse functionality

¢ dfu_mouse.h: contains DFU parameters definitions

* Loader.c: contains functions to parse and load firmware image to MCU flash memory
¢ Redirect_Vectors_S08.c: contains bootloader interrupts for MC9S08JM60 (S08 MCU)
* usb_descriptor.c: contains USB descriptor structures and functions

* usb_descriptor.h: contains USB descriptor parameters

 user_config.h: contains user configurations

USB DFU Bootloader for MCUs, Rev. 1, 2012

30 Freescale Semiconductor, Inc.

6.2 Creating new projects

To create new USB DFU bootloader projects:

1. Create a new project under:
* Source\Device\app\dfu_bootloader\codewarrior, or
* Source\Device\app\dfu_bootloader\cw10

= 1D AlbooosW
) DFU_PC_Demo
B) DFU_winusb_driver
B) image_files
B) M5D_Device_bootioader
B) 522559EVE
B 2 Me0
B D Mi2s
H I ke
B) Source
=) Device
= -
B) comman
B I dfu_bootioader
= I codewarrior

Port the Bootloader to Other Platforms

B) cfvlusbim123
B) cfv2usbm52259
=20
H) s08usbims0

B I ewld
I flash_driver

B) iar_ew

® | source

Figure 26. Create a new project folder

2. Create a project with a file structure like bootloader project for M52259EVB. Use the cfv2usbm52259 project as a

CodeWarrior template.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc.

A ¥ 4
N
rurn the Bootloader to Other Platforms

E D) AMooosw A (Dcodewarrior
() DFU_PC_Demo Dew10
& |2 DFU_winusb_driver ICh flash_driver
B I image_files Ciar_ew
=l |[) MSD_Device_bootioader E‘ Boot_loader_task.c
¥) 52259EvE ﬁl Boot_loader_task.h
) men] Bootioader.h
®) M2 €] dfu_mouse.c
®) k&0 _ﬂ dfu_mouse.h
=) Source ﬂ Loader.c
=l | Device E.'I Redirect_Vectors_S03.c
=I5 app €] usb_descriptor.c
I3) common _ﬂ'_] usb_descriptor.h

B] user_config.h
) codewarrior
) owio
) flash_driver
H) iar_ew
|3 source

Figure 27. M52259 bootloader project
3. Add files to project:
 Flash driver source code:
e flash.c: CFV1 and ColdFire+ flash driver
e flash_cfv2.c: CFV?2 flash driver
* flash_FTFL: Kinetis (L and K family) flash driver
¢ flash_hcs: SO8 flash driver
¢ flash. NAND.c: NAND flash driver
¢ USB classes (DFU and HID classes) source code
¢ USB device driver source code
¢ dfu_mouse.c, dfu_mouse.h, Boot_loader_task.c, Boot_loader_task.h, Loader.c, Bootloader.h, usb_descriptor.c,
usb_descriptor.h, and necessary files specific to boards
4. Modify Boot_loader_task.c file for the specific board willing to implement DFU bootloader.
5. Modify memory map which indicates application region for the platform in Bootloader.h file as shown below:

#if (defined _ MCF52259 H)

#define MIN RAM1 ADDRESS 0x20000000

#define MAX RAM1 ADDRESS 0x2000FFFF

#define MIN FLASH1 ADDRESS 0x00000000

#define MAX FLASH1 ADDRESS 0x0007FFFF

#define IMAGE_ADDR ((uint_32 ptr)0x9000)
#define ERASE SECTOR_SIZE (0x1000) /* 4K bytes*/
#define FIRMWARE SIZE ADD (0x0007FFFO)

#elif (defined _MCF51JM128_ H)

#define MIN RAM1 ADDRESS 0x00800000

#define MAX RAM1 ADDRESS 0x00803FFF

#define MIN FLASH1 ADDRESS 0x00000000

#define MAX FLASH1 ADDRESS 0x0001FFFF

#define IMAGE_ADDR ((uint_32 ptr) 0x0A000)
#define ERASE SECTOR_SIZE (0x0400) /* 1K bytes*/
#define FIRMWARE SIZE ADD (0x0001FFFO)

#elif (defined MCU_MK60N512VMD100)

#define MIN RAM1 ADDRESS O0xX1FFF0000

#define MAX RAM1 ADDRESS 0x20010000

#define MIN FLASH1 ADDRESS 0x00000000

#define MAX FLASH1 ADDRESS 0x0007FFFF

#define IMAGE_ ADDR ((uint_32 ptr)0xA000)

USB DFU Bootloader for MCUs, Rev. 1, 2012

32 Freescale Semiconductor, Inc.

g |

Conclusion
#define ERASE SECTOR_SIZE (0x800) /* 2K bytes*/
#define FIRMWARE SIZE ADD (0x0007FFF0)
#endif

7 Conclusion

The USB DFU class can be used as an option to make upgrades to the MCU firmware on the field. The application running
over the DFU bootloader requires only modifications in the linker file and exception table. The solution outlined in this
document can be migrated to any Freescale 8/16/32-bit MCU.

7.1 Problem reporting instructions

Issues and suggestions about this document and drivers should be provided through the support web page at freescale.com/
support. Please reference this application note.

7.2 Considerations and references

* Find the newest software updates and information about the USB DFU bootloader for MCUs on the Freescale
Semiconductor home page at freescale.com.

* More implementations using USB DFU class in Freescale MCUs can be found in the latest “Freescale USB Stack with
PHDC” software from freescale.com/usb.

* More details about USB DFU class can be found in “USB Device Firmware upgrade specifications” from usb.org.

* The AN4370SW software contains all the necessary SW to run USB DFU class in the embedded device and PC
running Windows OS.

* Download the source files for AN4370SW software (AN4370SW.zip) from freescale.com/.

USB DFU Bootloader for MCUs, Rev. 1, 2012

Freescale Semiconductor, Inc. 33

http://www.freescale.com/support
http://www.freescale.com/support
http://www.freescale.com/
http://www.freescale.com/usb
http://www.usb.org/home
http://www.freescale.com/

g |

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, EL516

2100 East Elliot Road

Tempe, Arizona 85284

+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000

support.asia @freescale.com

Document Number: AN4370
Rev. 1, 2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of

the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www .freescale.com or contact your Freescale

sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

2/

Z“ freescale

	Introduction
	Audience
	Scope

	Bootloader Overview
	Bootloader example overview: ColdFire V2

	Bootloader Architecture and Boot Sequence
	Architecture overview
	Bootloader sequence

	Develop Applications with Bootloader
	Linker files modifications
	CFV1 linker file: ColdFire V1 and ColdFire+
	CFV2 linker file: ColdFire V2-4
	Kinetis (K and L family) linker file
	S08 linker file

	Exception table redirection
	MQX user application
	Bare metal user application
	CFV1 MCU: ColdFire V1 and ColdFire+
	CFV2 MCU: ColdFire V2-4
	Kinetis (L and K family) MCU
	S08 MCU

	Bootloader Example: Boot MQX
	Preparing the setup
	Software requirements
	Hardware setup

	Preparing the firmware image file
	Building the application
	Running the application
	Driver installation

	Downloading firmware

	Port the Bootloader to Other Platforms
	USB DFU bootloader file structure
	Creating new projects

	Conclusion
	Problem reporting instructions
	Considerations and references

