
© 2015 Freescale Semiconductor, Inc. All rights reserved.

Relocate Subroutines to PRAM for

MC56F827xx DSC
Using the CodeWarrior Linker Command File

1. Introduction

There are two speed modes for MC56F827xx Digital

Signal Controller (DSC). In normal mode, codes runs at

a maximum frequency of 50 MHz in both Flash and

RAM. In fast mode, codes runs at 50 MHz in Flash, but

100 MHz in RAM. This application note describes the

details on how to relocate codes into RAM and speed

up some time critical subroutines.

The relocation is realized by linker command file (LCF)

and usage of pragma directives in a *.c source file.

The two scenarios of implementation are introduced.

• Relocating non-precompiled source code into

RAM ˗˗ Assigns RAM and Flash space for code

and data dynamically through well-designed

linker command file.

• Relocating a compiled object, a library for

example into RAM ˗˗ Dynamically assigns

RAM space for code and data, but assigning a

fixed Flash space is a must for code storage.

Freescale Semiconductor, Inc. Document Number: AN5143

Application Note Rev. 0 , 06/2015

Contents

1. Introduction .. 1
2. Dual-speed mode and memory map 2
3. Relocating code into internal RAM 3

3.1. Code relocating without libraries 4
3.2. Code relocating with libraries 8
3.3. Understanding the map report 11

4. Conclusion and usage consideration 12
5. References .. 12
6. Revision history .. 14

Dual-speed mode and memory map

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

2 Freescale Semiconductor, Inc.

2. Dual-speed mode and memory map
Table 1. MC56F827xx clock modes

Mode Core System IP Bus

Normal 50 50 50

Fast 100 100 50

Table 1 lists operation frequency of dual-speed modes on MC56F827xx. The whole clock system is

composed of three parts:

• Core clock ˗˗ Provides operation clock for 56800EX core.

• System clock ˗˗ Provides clock rate management to all on chip peripherals which in turn

manages the IP bus frequency. System clock and system integration module (SIM) clock are

synonymous.

• IP bus clock ˗˗ Provides read/write clocks for all peripherals.

Processor Expert (PEx) is a development assistant that helps you in rapidly configuring the
Freescale microcontrollers. PEx provides a speed-mode configuration switch located in the
CPU bean. In Figure 1, the configuration switches to fast mode, the estimated core, the system
clock, and the IP bus frequencies update instantly. For more information, see the MC56F827xx
Reference Manual (document MC56F827XXRM).

Figure 1. Switching MC56F82748 into fast-mode in CodeWarrior for Microcontrollers v10.6

When 56F827xx is running under fast mode, the code runs at 50 MHz in Flash, but 100 MHz in RAM.

Time critical subroutines can be relocated into RAM for better performance.

The 56800EX core of Freescale has a dual Harvard architecture. The Core bus are composed of program

data bus (PDB) and primary/secondary data buses (XDB). It is possible to access the entire Flash and

http://fsls.co/doc/MC56F827XXRM

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

Freescale Semiconductor, Inc. 3

RAM through PDB or XDB. These two addressing buses provide different functionality on Freescale

DSC, which are listed below.

Program data bus, PDB:

• Core instruction fetch

Primary/secondary data buses, XDB:

• Data read/write

• Peripheral read/write. For example, DMA, ADC and others.

Relocating code into RAM requires individual sub-space in PDB mapped RAM. In Figure 2, the sub-

space start from P:0xF000. The prefix “P” and “X” refer to the program data bus and the data bus

respectively. Since the PDB RAM and the XDB RAM access the same on-chip RAM of MC56F82748,

you must preserve the assigned sub-space in PDB RAM before the XDB RAM placement in link time.

For more information, see the MC56F827xx Reference Manual (document MC56F827XXRM).

C56F827xx reference manual.

Figure 2. Memory Map of MC56F82748 DSC

3. Relocating code into internal RAM

This section provides guidance for relocating code into internal RAM with CodeWarrior for

Microcontrollers v10.6 and PE. Because RAM is volatile, the relocated code must be stored in flash and

copied into RAM during microcontroller start-up. The relocation of codes into RAM is realized by LCF

(linker command file) and pragma directives source file. To preserve the customized linker command

file you must disable the auto generate LCF by Processor Expert option, as shown in Figure 3.

http://fsls.co/doc/MC56F827XXRM

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

4 Freescale Semiconductor, Inc.

Figure 3. Disable the Generate linker file option

The structure of a linker command file for DSC includes three segments.

• Memory Segment

The memory segment in LCF divide available memory into sub segments as listed in Example 2, a

sub segment description list name, attribute, start address and length sequentially.

• Closure Segment

This is an optional block, which provides a way to assign symbols immune from dead stripping.

• Section Segment

The section segment in LCF defines content of memory segments, is capable to store start/end

address, and segment sizes into Global variables.

For more information on these three segments, see Section 7.1 “Structure of Linker Command File”

of “CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build

Tools Reference Manual Rev. 10.6”.

3.1. Code relocating without libraries

This section describes how to relocate non-compiled source code into ram. Take a CodeWarrior project

consist of a periodical interrupt service routine PIT_100k_OnInterrupt() for illustration. The

following description shows how to use #pragma directive to define a unique code section, and

relocate it to RAM by modify the default LCF generated by PEx.

3.1.1. Define code sections with pragma directive

To relocate code into RAM, it is necessary to tag desire codes for link time relocation. Example 1 shows

how to create a new section ramFunc, and put the function PIT_100k_OnInterrupt()into it. All

the codes in ramFunc section are referenced in LCF with the word ramFunc.text, and they have

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

Freescale Semiconductor, Inc. 5

readable and executable attribution. Codes surround with #pragma section ramArea begin/end

become members of section ramFunc.

Example 1. Use pragma directives to define a new code section
#pragma define_section ramFunc "ramFunc.text" RX

#pragma section ramArea begin

#pragma interrupt alignsp

void PIT_100k_OnInterrupt(void)

{

 /*--------------------------------*/

 /* codes to be relocated into RAM */

 /*--------------------------------*/

}

#pragma section ramArea end

3.1.2. Relocate objects into RAM

The objects that are relocated are stored in Flash and copied into RAM during microcontroller

initialization. Example 2 lists memory segments, the .p_ramSpace memory segment is the only

difference from Processor Expert generated LCF.

In the LCF for DSC, memory segments with RWX attributes are placed into PDB and RW attributes

area placed into XDB. The purpose of each memory area is listed below.

• Program memory

— .p_ramSpace － PDB mapped RAM

— .p_Code － User applications

— .p_reserverd_FCF － Flash backdoor comparison key

— .p_Interrupts － Interrupt vector tables

• Data memory

— .x_internal_ROM － XDB mapped flash

— .x_Data － XDB mapped RAM

Example 2. Memory segment for non-compiled code relocation
MEMORY {

 # I/O registers area for on-chip peripherals

 .x_Peripherals (RW) : ORIGIN=0xC000 , LENGTH=0

 # List of all sections specified in the "Build options" tab

 .p_Interrupts (RWX) : ORIGIN=0x00000000, LENGTH=0x000000DE

 .p_Code (RWX) : ORIGIN=0x00000208, LENGTH=0x00007DF8

 .x_Data (RW) : ORIGIN=0x00000000, LENGTH=0x00001000

 .p_reserved_FCF (RWX) : ORIGIN=0x00000200, LENGTH=0x00000008

 .x_internal_ROM (RW) : ORIGIN=0x000040DE, LENGTH=0x00000122

 .p_ramSpace (RWX) : ORIGIN=0x0000f000, LENGTH=0x00001000

 # p_flash_ROM_data mirrors x_Data, mapping to origin and length

 # the "X" flag in "RX" tells the debugger flash p-memory.

 # the p-memory flash is directed to the address determined by AT

 # in the data_in_p_flash_ROM section definition

 .p_flash_ROM_data (RX) : ORIGIN=0x00000000, LENGTH=0x00001000

}

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

6 Freescale Semiconductor, Inc.

In section segment, a section starts with a dot sign following unique section name and a semicolon. The

braces surrounded block defines section content and variables, and end with a greater sign assigns

mapped memory area.

• The content of .p_Code memory area define by section .ApplicationCode, which listed

in Example 3, the rtlib.text had been commenting out with a leading pound character.

• The rtlib.text are routines for save/restore all registers, it comments out from section

.ApplicationCode and will insert into section .ramFunctions, Runtime libraries take

place when “saveall” parameter utilized for interrupt subroutines.

• The “ALIGN” syntax with parameter “2” moves location counter to next two words(4 bytes)

alignment boundary, it’s also capable to move location counter to next n word boundary, where

n is a power of 2.

Example 3. .p_Code content in LCF
.ApplicationCode :

 {

 F_Pcode_start_addr = .;

 # .text sections

 * (.text)

 #* (rtlib.text)

 * (startup.text)

 * (fp_engine.text)

 * (ll_engine.text)

 * (user.text)

 * (.data.pmem)

 F_Pcode_end_addr = .;

 # save address where for the data start in pROM

 . = ALIGN(2);

 __pROM_code_start = .;

 } > .p_Code

Figure 4. Memory planning for non-compiled code relocating

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

Freescale Semiconductor, Inc. 7

The content of memory segment .p_ramSpace defined by section segment .ramFunctions which

listed in Example 4. An “AT” syntax defines optional load/resident address of a section segment. The

codes inside .ramFunctions is going to resident in Flash memory with address

__pROM_code_start and run on memory segment .p_ramSpace, this section will copied into

memory segment .p_ramSpace during DSC initialization. The relationship between these section

segments is illustrated in Example 4. And the codes relocated into RAM lists below.

• Objects resident in flash but execution on RAM

— Runtime Libraries

— Codes in section “ramArea.text”, which defined by specialized pragma in Example 1

Example 4. .p_ramSpace area content of LCF
.ramFunctions : AT(__pROM_code_start)

 {

 F__pRAM_code_start = .;

 * (rtlib.text)

 * (ramArea.text)

 # save address where for the data start in pROM

 . = ALIGN(2);

 F__pRAM_code_end = .;

__ramfunctions_size = F__pRAM_code_end - F__pRAM_code_start;

 __pROM_data_start = __pROM_code_start + __ramfunctions_size;

 } > .p_ramSpace

The section segment .p_flash_ROM_data in Example 5 provides predefined variable container, it

placed at start of RAM by default. Since the section segment .ramFunctions had been placed at start

of RAM as Example 4 shows. Section segments of .data_in_p_flash_ROM and

.ApplicationData must stand aside in RAM, this achieved by moving location counter as shading

text in Example 5.

Example 5. .p_flash_ROM_data area block of LCF
.data_in_p_flash_ROM : AT(__pROM_data_start)

 {

 # the data sections flashed to pROM

 # save data start so we can copy data later to xRAM

 . = . + __ramfunctions_size; #prevent overlap with .ramFunctions

 __xRAM_data_start = .;

 # .data sections

 * (.const.data.char) # used if "Emit Separate Char Data Section" enabled

 * (.const.data)

 * (fp_state.data)

 * (rtlib.data)

 * (.data.char) # used if "Emit Separate Char Data Section" enabled

 * (.data)

 # save data end and calculate data block size

 . = ALIGN(2);

 __xRAM_data_end = .;

 __data_size = __xRAM_data_end - __xRAM_data_start;

F_p_flash_ROM_data_loadAddr = __pROM_data_start + __ramfunctions_size;

 } > .p_flash_ROM_data

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

8 Freescale Semiconductor, Inc.

NOTE

The shifted location counter brings a content undefined sub-area in

memory segment .p_flash_ROM_data shows in Figure 5, the

undefined subarea will fill with 0x0000 automatically. It can be eliminated

by assign two fixed RAM areas for code and data respectively. Generally,

it’s suggest keeping RAM space allocate dynamically while developing.

The length of undefined area equals length of 1st section segment in RAM,

place smaller one of .ramfunctions and

.data_in_p_flash_ROM firstly makes it minimized.

Figure 5. Record File of source code relocated MC56F82748

In Example 6, a non-zero content of F_pROM_to_pRAM enables pROM-to-pRAM copy utility, and

three variables F_Livt_size, F_Livt_ROM_addr and F_Livt_RAM_addr pass code sizes,

resident address and runtime address of section .ramFunctions for pROM to pRAM utility.

Memory copy utilities will be called while DSC start-up initialization and the user program activated

right after start-up initialization finished.

Example 6. Parameters assignment for copy utility in section of .ApplicationData
#parameters for .p_flash_ROM_data copy

 F_pROM_to_xRAM = 0x0001; #enable pROM-to-xRAM copy utility

 F_Ldata_size = __data_size;

 F_Ldata_RAM_addr = __xRAM_data_start;

 F_Ldata_ROM_addr = F_p_flash_ROM_data_loadAddr;

 #parameters for ramfunction copy

 F_pROM_to_pRAM = 0x0001; #enable pROM-to-pRAM copy utility

 F_Livt_size = __ramfunctions_size;

 F_Livt_RAM_addr = F__pRAM_code_start;

 F_Livt_ROM_addr = __pROM_code_start;

 F_start_bss = _START_BSS;

 F_end_bss = _END_BSS;

 __DATA_END=.;

 } > .x_Data

3.2. Code relocating with libraries

Previous section introduced a universal LCF framework for codes relocate into ram on MC56F82748.

However, pre-compiled libraries hide source code and makes section pragma useless. The “OBJECT”

keyword provides a way select compiled code (object) in LCF.

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

Freescale Semiconductor, Inc. 9

The modified memory map planning is illustrated in Figure 6. A size fixed flash area (.p_FuncCode)

assigned for libraries storage, which is divided from the last 0x300 words (0x600 bytes) of 64KB flash.

This area limits the size of codes/libraries execute on RAM. The flash size of 56F82748 is large enough.

Therefore, the recommended setting size of .p_ramFuncCode is 8kb but shrinks when flash space is

not enough.

Figure 6. Memory planning for libraries relocating

In Example 7, the shaded text indicates modified text from processor expert generated LCF.

• The .p_Code memory segment length shrunken to 0x00007AF8 (62960 Bytes) from original

0x00007DF8.

• An extra memory segment .p_ramFuncCode added for codes/libraries storage (and execute

on RAM).

Example 7. Memory segment for libraries/codes relocation on 56F82748
MEMORY {

 # I/O registers area for on-chip peripherals

 .x_Peripherals (RW) : ORIGIN = 0xC000, LENGTH = 0

 # List of all sections specified in the "Build options" tab

 .p_Interrupts (RWX): ORIGIN = 0x00000000, LENGTH = 0x000000DE

 .p_Code (RWX): ORIGIN = 0x00000208, LENGTH = 0x00007AF8 #PDB mapped flash (pFlash)

 .x_Data (RW) : ORIGIN = 0x00000000, LENGTH = 0x00001000

 .p_reserved_FCF (RWX): ORIGIN = 0x00000200, LENGTH = 0x00000008

 .x_internal_ROM (RW) : ORIGIN = 0x000040DE, LENGTH = 0x00000122

 .p_ramFuncCode (RWX): ORIGIN = 0x00007D00, LENGTH = 0x00000300 #pFlash subarea for ram-code

storage

 .p_ramFuncSpace (RWX): ORIGIN = 0x0000F000, LENGTH = 0x00001000 #PDB mapped 8Kb RAM

 .p_flash_ROM_data (RX) : ORIGIN = 0x00000000, LENGTH = 0x00001000

}

Section segment .at_of_p_ramFuncSpace in Example 8 writes end-address into variable

__pROM_data_start for content insertion by other sections.

Example 8. Flash area for libraries resident
.at_of_p_ramFuncSpace :

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

10 Freescale Semiconductor, Inc.

 {
 WRITEH(0X2); # dummy insertion, prevent warning
 __pROM_data_start = .;
} > .p_ramFuncCode

Section segment .data_in_p_flash_ROM in Example 9.

• Resident at PDB address __pROM_data_start through keyword “AT”

• Variable __ramFunc_code_start assigns start of section segment .ramFunctions

Example 9. Selected content of .datain_p_flash_ROM Area

.data_in_p_flash_ROM : AT(__pROM_data_start)

 {

 # the data sections flashed to pROM

 # save data start so we can copy data later to xRAM

 __xRAM_data_start = .;

 # .data sections

 * (.const.data.char) # used if "Emit Separate Char Data Section" enabled

 * (.const.data)

 ……

 ……

 . = ALIGN(2);

 __xRAM_data_end = .;

 __data_size = __xRAM_data_end - __xRAM_data_start;

 __ramFunc_code_start = __pROM_data_start + __data_size;

} > .p_flash_ROM_data

The section segment .ramFunctions in Example 10 defines content of .p_ramFuncSpace.

• Keyword “AT” assign resident address for .p_ramFuncSpace area

• Shifted location counter “.” Prevents overlap with section segment

.data_in_p_flash_ROM

• Keyword “OBJECT” selects functions, parameters can be find in Map file

(Project_Name.elf.xMAP)

• Runtime routines INTERRUPT_SAVEALL and INTERRUPT_RESTOREALL relocate to

.p_ramFuncSpace

Example 10. PDB Mapped RAM content definition
.ramFunctions : AT(__ramFunc_code_start)

 {

 . = . + __data_size;

 F_p_ramfunctions_start = .;

 #---- select function "PIT_100k_OnInterrupt()" ----#

 OBJECT(FPIT_100k_OnInterrupt, Events_c.obj)

 #---- select library "PCLIB_ControllerPIANDLPFILTERFAsm()" ----#

 OBJECT(FPCLIB_ControllerPIANDLPFILTERFAsm, 56800Ex_PCLIB.lib)

 #---- routine of INTERRUPT_SAVEALL, INTERRUPT_RESTOREALL ----#

 * (rtlib.text)

 . = ALIGN(2);

 F_p_ramfunctions_end = .;

Relocating code into internal RAM

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

Freescale Semiconductor, Inc. 11

 __ramFunctions_size = F_p_ramfunctions_end - F_p_ramfunctions_start;

 __ramFunctions_LdAddr = __ramFunc_code_start + __data_size;

 } > .p_ramFuncSpace

In section segment .ApplicationData,

• Location counter shifted, prevent overlap with section segment .data_in_p_flash_ROM
and .ramFunctions

• Setup pROM-to-xRAM copy utility for section segment .data_in_p_flash_ROM

• Setup pROM-to-pRAM copy utility for section segment .ramFunctions

Example 11. Selected content of .x_Data area
.ApplicationData :

 {

 # save space for the pROM data copy

 . = __xRAM_data_start + __data_size + __ramFunctions_size;

 # runtime code __init_sections uses these globals:

 ……

 ……

 ……

 F_Ldata_size = __data_size; #pROM-to-xRAM copy utility

 F_Ldata_RAM_addr = __xRAM_data_start;

 F_Ldata_ROM_addr = __pROM_data_start;

 F_Livt_size = __ramFunctions_size; #pROM-to-pRAM copy utility

 F_Livt_RAM_addr = F_p_ramfunctions_start;

 F_Livt_ROM_addr = __ramFunctions_LdAddr;

 F_xROM_to_xRAM = 0x0000;

 F_pROM_to_xRAM = 0x0001;

 F_pROM_to_pRAM = 0x0001;

 F_start_bss = _START_BSS;

 F_end_bss = _END_BSS;

 __DATA_END=.;

} > .x_Data

3.3. Understanding the map report

After successfully built projects, linker logs object placement result in a map file. Example 12 lists map

result of section .ramFunctions in Code relocating with libraries.

• A pound sign indicates start of comment.

• A non-pound started line lists map result.

• Start address, length, type, function name and source file sequentially.

• Function PIT_100k_OnInterrupt start from 0xF010 with length 0x0028 words (80 bytes).

• The size of PIT_100k_OnInterrupt(), PCLIB_ControllerPIANDLPFILTERFAsm,

INTERRUPT_SAVEALL and INTERRUPT_RESTOREALL calculated in variable

__ramFunctions_size , and it shows all functions in section .ram_functions takes

0x84 words (264 bytes).

Example 12. Map result of .ramFunctions
.ramFunctions

#>0000F010 F_p_ramfunctions_start (linker command file)

References

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

12 Freescale Semiconductor, Inc.

 0000F010 00000028 .text FPIT_100k_OnInterrupt (Events_c.obj)

 0000F038 0000001A .text FPCLIB_ControllerPIANDLPFILTERFAsm (56800Ex_PCLIB.lib pclib_controlle)

 0000F052 00000042 rtlib.text rtlib.text (runtime 56800E smm.lib save_reg.o)

 0000F052 00000023 rtlib.text INTERRUPT_SAVEALL (runtime 56800E smm.lib save_reg.o)

 0000F075 0000001F rtlib.text INTERRUPT_RESTOREALL (runtime 56800E smm.lib save_reg.o)

#>0000F094 F_p_ramfunctions_end (linker command file)

#>00000084 __ramFunctions_size (linker command file)

#>00007D21 __ramFunctions_LdAddr (linker command file)

4. Conclusion and usage consideration

This application note gives guidance about how to relocate codes/libraries to RAM. The PROM-to-

PRAM tool in start-up code provides a way copy codes to RAM while DSC initialization, if this tool is

unavailable. A customized upload tool also provided(Example 13). Fast mode of MC56F82748 double

clocking frequency of 56800EX core. By relocating codes into RAM, the flash access time won’t limit

DSC performance anymore.

Example 13. Memory copy tool

asm void mem_copy(long p_source_addr,long p_dest_addr,unsigned int cnt)

{

 move.l a10,r2

 move.l b10,r3

 do y0,>>end_pdbCpy // copy for 'cnt' times

 move.w p:(r2)+,x0 // fetch value at p-address

 nop

 nop

 nop

 move.w x0,p:(r3)+ // stash value at p-address

 end_pdbCpy:

 nop

 rts

}

Many conditions cause DSC runway or relocate fail while editing the linker command file. When this

occurs:

• First, check the map report and fix incorrect object placement with linker command file.

• Second, check copy results in debug mode, and fix copy parameters when start-up copy failed.

In Relocate objects into RAM, the undefined area brings extra zero text in flash. It can be minimized by

the smaller one of section .data_in_p_flash_ROM and .ramFunctions in start of RAM. An

opposite example is framewok of Code relocating with libraries which places

.data_in_p_flash_ROM at start of RAM area.

5. References

1. MC56F827xx Reference Manual (document MC56F827XXRM).

2. Inclusion of DSC Freescale Embedded Software Libraries in CodeWarrior 10.2 (document

AN4586).

3. CodeWarrior Development Studio for Microcontrollers V10.x Digital Signal Controller Build

Tools Reference Manual (document CWMCUDSCCMPREF)

http://fsls.co/doc/MC56F827XXRM
http://fsls.co/doc/AN4586
http://fsls.co/doc/CWMCUDSCCMPREF

References

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

Freescale Semiconductor, Inc. 13

4. Relocating Code and Data Using the CodeWarrior Linker Command File for ColdFire

Architecture (document AN4329)

http://fsls.co/doc/AN4329

Revision history

Relocate Subroutines to PRAM for MC56F827xx DSC, Rev. 0, 06/2015

14 Freescale Semiconductor, Inc.

6. Revision history

Revision number Date Substantive changes

0 06/2015 Initial release

Document Number: AN5143
Rev. 0

06/2015

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to

use Freescale products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. ‘‘Typical’’ parameters that

may be provided in Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including

‘‘typicals,’’ must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which can be found at the

following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and Processor Expert, are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the

property of their respective owners.

All rights reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. Dual-speed mode and memory map
	3. Relocating code into internal RAM
	3.1. Code relocating without libraries
	3.1.1. Define code sections with pragma directive
	3.1.2. Relocate objects into RAM

	3.2. Code relocating with libraries
	3.3. Understanding the map report

	4. Conclusion and usage consideration
	5. References
	6. Revision history

