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Exploring the 64-bit Memory Mapped 

Arithmetic Unit 

By Martin Mienkina 

1. Introduction 

In embedded application spaces such as power 

metering, hardware support for high-dynamic range 

arithmetic operations is important to maximize system 

performance and minimize device power dissipation. 

The microcontrollers typically used for power metering 

applications integrate Σ-Δ ADCs with 24-bit or higher 

dynamic range of measurement.  

In order to take advantage of such high resolution 

measurements, their processing must be performed with 

at least 24-bit precision. The analysis of filter-based 

metering algorithms, targeted to the power metering 

application (see document: AN4265), indicated that 

critical operations, take 64% of the computation time, 

are 64-bit multiply, multiply-accumulate, divide, and 

square root. This is shown in Figure 1. 
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Figure 1. Filter-based metering algorithms: computation split 

Conventional general-purpose processors are optimized for standard fixed-length applications and often 

cannot support the requirements for extended math precision. Suppliers address requirements for 

extended math precision by either taking advantage of more advanced core architectures, for example, 

the ARM
®

 Cortex
®
-M4 with an FPU module, or by integrating a dedicated math coprocessor module. 

Both architectural options were carefully evaluated for the Kinetis-M microcontroller family targeted to 

metering applications. In order to accelerate computation of the metering algorithms on this 

microcontroller family, the ARM Cortex-M0+ core platform has been integrated together with a 64-bit 

memory-mapped arithmetic unit (see document: KM34P144M75SF0RM).  

2. Architecture and programming model 

As a memory-mapped block located on a system bus port, the 64-bit memory-mapped arithmetic unit 

(MMAU) responds based on memory addresses to its programming model. The hardware blocks of the 

MMAU include: hardware interface, operation decoder with registers, and arithmetic unit. See Figure 2. 

http://fsls.co/doc/KM34P144M75SF0RM
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Figure 2. Internal structure of the memory-mapped arithmetic unit 

While the performance of the standalone arithmetic unit can provide a several-fold increase for high-

dynamic range calculations versus the most common microcontroller cores, the computational 

performance of the microcontroller would suffer without an efficient hardware interface. The hardware 

interface comprises an operation decoder and couples a 64-bit arithmetic unit to the ARM Cortex-M0+ 

core. The 64-bit arithmetic unit is implemented as a hardwired logic circuit designed to calculate basic 

operations such as multiply, multiply-accumulate in a single clock cycle, and more advanced operations 

such divide and square-root in several clock cycles. 

In order to maximize computation throughput, the hardware interface was based on the principle of 

decorated memory-mapped computation operation launching. Table 1 shows an example of a decorated 

memory-mapped address range.  
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Table 1. Part of the decorated memory map for arithmetic operations 

Decorated operation code 
Register 

identifier[4:2] Register 

name 

Operation 

offset 

address[11:0] 

Operation 

mnemonic 

Operation 

brief 

description
1
 

Address[11:2] 

11 10 9 8 7 6 5 4 3 2 

- 0 1 0 1 1 0 0 0 0 X0 0x2C0 (not used) 

32=√64 
QSRD 

A10=√X32 

- 0 1 0 1 1 0 0 0 1 X1 0x2C4 (not used) 

- 0 1 0 1 1 0 0 1 0 X2 0x2C8 (LSW of radicand) 

- 0 1 0 1 1 0 0 1 1 X3 0x2CC (MSW of radicand) 

- 0 1 0 1 1 0 1 0 0 A0 0x2D0 (LSW of square root) 

- 0 1 0 1 1 0 1 0 1 A1 0x2D4 (MSW of square root) 

S 1 0 0 0 1 0 0 0 0 X0 0x440 (not used) 

64=64*32 
QMULD 

A10=X21*X3 

S 1 0 0 0 1 0 0 0 1 X1 0x444 (multiplicand) 

S 1 0 0 0 1 0 0 1 0 X2 0x448 (LSW of multiplier) 

S 1 0 0 0 1 0 0 1 1 X3 0x44C (MSW of multiplier) 

S 1 0 0 0 1 0 1 0 0 A0 0x450 (LSW of product) 

S 1 0 0 0 1 0 1 0 1 A1 0x454 (MSW of product) 

S 1 1 1 1 0 0 0 0 0 X0 0x780 (LSW of numerator) 

64=64/64 
SDIVDD 

A10=X10/X32 

S 1 1 1 1 0 0 0 0 1 X1 0x784 (MSW of numerator) 

S 1 1 1 1 0 0 0 1 0 X2 0x788 (LSW of denominator) 

S 1 1 1 1 0 0 0 1 1 X3 0x78C (MSW of denominator) 

S 1 1 1 1 0 0 1 0 0 A0 0x790 (LSW of quotient) 

S 1 1 1 1 0 0 1 0 1 A1 0x794 (MSW of quotient) 

In Table 1, each address within the decorated memory-mapped address range comprises a decorated 

operation code and register identifier pointing to a register to be accessed. The decorated operation code 

also differentiates whether the operation returns a saturated or non-saturated result. Advantageously, by 

implementing decorated operation launching within the hardware interface, a single memory access is 

required to load an operand to the input operand register and trigger the 64-bit arithmetic unit to perform 

the required arithmetic operation.  

A 64=64/64 signed divide operation (SDIVDD) is given as an example to be performed by the MMAU. 

It comprises the following write and read memory accesses: 

Example 1. 64=64/64 divide operation 
1. ADDR(0x780) NUM_L // write least-significant 32 bits of numerator to X0 
2. ADDR(0x784) NUM_H  // write most-significant 32 bits of numerator to X1 
3. ADDR(0x788) DEN_L  // write least-significant 32 bits of denominator to X2 
4. ADDR(0x78C) DEN_H  // write most-significant 32 bits of denominator to X3,  

// select & trigger 64=64/64 operation 
5. QUOT_L ADDR(0x790) // read least-significant 32 bits of result from A0  
6. QUOT_H ADDR(0x794) // read most-significant 32 bits of result from A1  

 

 
 
 
 
1
 It should be noted that a 2-digit numeric identifier suffix denotes 64-bit registers, for example, A10 refers to the concatenated 

{A1, A0} register combination, etc.  Furthermore, since all the registers are 32-bit (4 byte) values, the low-order two byte 
address bits [1:0] are always 0 and thus have not been included within the table. 
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2.1. Arithmetic operations 

The hardware interface allows development of simple, short, and very efficient software wrappers to 

load operands to the 64-bit arithmetic unit and retrieve computed results. 

Example 2 shows the software wrapper for a 64=64/64 divide operation written in GCC inline 

assembler. 

Example 2. Software wrapper for d_sdiv_dd operation 
/***************************************************************************//*! 
* @brief   Divide two 64-bit integer values returning a 64-bit integer 
*          quotient. 
* @details The @ref d_sdiv_dd function divides two 64-bit integer values 
*          returning a 64-bit integer quotient. 
* @param   dnum    @ref int64 integer value. 
* @param   dden    @ref int64 integer value. 
* @return  @ref int64 integer value. 
* @note    Quotient is stored in A10 register of the MMAU for next computation. 
******************************************************************************/ 
#define d_sdiv_dd(dnum,dden)                                                   \ 
({                                                                             \ 
  register uint32 addr = (MMAU_SDIVDD|MMAU_X0);                                \ 
  register int64 out  = (dnum);                                                \ 
  register int64 inp  = (dden);                                                \ 
  asm volatile                                                                 \ 
  (                                                                            \ 
    "stm %0!,{%Q1,%R1}\n"                                                      \ 
    "stm %0!,{%Q2,%R2}\n"                                                      \ 
    "ldm %0!,{%Q1,%R1}  ":"=l"(addr),"=l"(out):"l"(inp),"0"(addr),"1"(out)     \ 
  );                                                                           \ 
  (int64)out;                                                                  \ 
}) 

 

In total, 140 software wrappers for elementary and more advanced arithmetic functions were written to 

give users full access to the MMAU integrated on the Kinetis-M microcontroller family. All software 

wrapper functions sets for signed integer, unsigned integer and signed fractional data types are listed in 

Table 2, Table 3, and Table 4. 

Table 2. Software wrappers for signed integer data types 

Return type SMUL SMULS SMAC SMACS SDIV SDIVS Load/Read 

int32 — — — — l_sdiv_ll l_sdivs_ll l_srda 

int64 

d_smul_ll d_smuls_dl d_smac_ll d_smacs_ll d_sdiv_dl d_sdivs_dl d_srda 

d_smul_dl d_smulas_l d_smac_dl d_smacs_dl d_sdiva_l d_sdivas_l   

d_smula_l   d_smaca_dl d_smacas_dl d_sdiv_dd d_sdivs_dd   

        d_sdiva_d d_sdivas_d   

void 

smul_ll smuls_dl smac_ll smacs_ll sdiv_ll sdivs_ll slda_d 

smul_dl smulas_l smac_dl smacs_dl sdiv_dl sdivs_dl   

smula_l   smaca_dl smacas_dl sdiva_l sdivas_l   

        sdiv_dd sdivs_dd   

        sdiva_d sdivas_d   
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Table 3. Software wrappers for unsigned integer data types 

Return type UMUL UMULS UMAC UMACS UDIV USQR Load/Read 

uint16 — — — — — s_usqr_l — 

uint32 — — — — l_udiv_ll l_usqr_d l_urda 
  

    
  l_usqra   

uint64 d_umul_ll d_umuls_dl d_umac_ll d_umacs_ll d_udiv_dl — d_urda 
  d_umul_dl d_umulas_l d_umac_dl d_umacs_dl d_udiva_l     
  d_umula_l   d_umaca_dl d_umacas_dl d_udiv_dd     
          d_udiva_d     

void umul_ll umuls_dl umac_ll umacs_ll udiv_ll usqr_l ulda_d 
  umul_dl umulas_l umac_dl umacs_dl udiv_dl usqr_d   
  umula_l   umaca_dl umacas_dl udiva_l     
          udiv_dd     
          udiva_d     

 
Table 4. Software wrappers for signed fractional data types 

Return type MUL MULS MAC MACS DIV DIVS SQR Load/Read 

frac16 — — — — — — s_sqr_l — 

frac32 

l_mul_ll l_muls_dl l_mac_ll l_macs_ll 

l_div_ll l_divs_ll 

l_sqr_d l_rda 

l_mul_dl l_mulas_l l_mac_dl l_macs_dl l_sqra   

l_mula_l   l_maca_dl l_macas_dl     

frac64 

d_mul_ll d_muls_dl d_mac_ll d_macs_ll d_div_dl d_divs_dl 

— 

d_rda 

d_mul_dl d_mulas_l d_mac_dl d_macs_dl d_diva_l d_divas_l   

d_mula_l   d_maca_dl d_macas_dl       

void 

mul_ll muls_dl mac_ll macs_ll div_ll divs_ll sqr_l lda_l 

mul_dl mulas_l mac_dl macs_dl div_dl divs_dl sqr_d lda_d 

mula_l   maca_dl macas_dl diva_l divas_l     

2.2. Operation and error indicators 

The module reports configuration, operating state, and result status for each operation through the 

control and status register (CSR).  

Table 5 summarizes all operation indicators, error indicators, and trigger flags for interrupt generation 

and DMA transfer supported by the MMAU. 

Table 5. Operation and error indicators 

Flag Description Set Clear Interrupt trigger DMA trigger 

BUSY This read-only flag is asserted when the 

MMAU is performing a divide or square 

root. It is cleared when MMAU is idle 

HW — Set CSR[DRE] 
&& 

CSR[BUSY]==0 

DZIF Divide by Zero interrupt flag HW Set CSR_IF_CLR[DZIF] Set CSR[DZIE] && CSR[DZIF]==1 — 

VFIF Multiply or divide overflow interrupt flag HW Set CSR_IF_CLR[VFIF] Set CSR[VFIE] && CSR[VFIF]==1 — 

QIF Accumulation overflow interrupt flag HW Set CSR_IF_CLR[QIF] Set CSR[QIE] && CSR[QIF]==1 — 

N Signed calculation result is negative 

operation result status flag 

SW/HW — — 

DZ Divide by Zero operation result status 

flag 

SW/HW — — 

V Multiply or divide overflow operation 

result status flag 

SW/HW — — 

Q Accumulation overflow operation result 

status flag 

SW/HW — — 
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Firstly, the busy indicator (BUSY) reports the operation status of the module. This read-only bit is 

asserted when the module is performing either divide or square root operation.  

Secondly, the errors and status of math operations is reported through “sticky” flags on overflow for 

multiply and divide operations (VIF), on overflow for accumulate operation (QIF), and on divide by 

zero (DZIF). These flags also serve as trigger sources to generate a module interrupt event if their 

respective interrupt enable flags are set. They can only be asserted by hardware and cleared by the user 

application. 

Finally, flags notifying the result status of each operation are also present and include the signed 

calculation result is negative (N), divide by zero (DZ), multiply or divide overflow (V), and 

accumulation overflow (Q) status flags. These flags are updated after each operation by hardware and 

can be set/cleared in user application by the software. 

NOTE 

When MMAU is busy, the read and write accesses to result registers A1 

and A0, and also write accesses to X3 input register and control and status 

register CSR are stalled (using wait states). 

2.3. Interrupt generation and processing 

As already indicated, the MMAU is designed to respond to errors during operations by generating an 

interrupt event. The MMAU interrupt is routed to the vector 36 of the Kinetis-M interrupt vector table 

(see document: KM34P144M75SF0RM). Such error reporting is very useful for non-intrusive 

debugging of the complex math algorithms.  

Example 3 shows software routine for servicing all variety of interrupt events generated by the MMAU. 

Example 3. MMAU interrupt service routine 
void mmau_isr (void) 
{ 
  /* read interrupt flags                                                     */ 
  register uint32 tmp = MMAU_CSR; 
 
  /* process callback function                                                */ 
  if (tmp & MMAU_DZIF) { pCallbackMMAU (DZIF_CALLBACK); } 
  if (tmp &  MMAU_VIF) { pCallbackMMAU ( VIF_CALLBACK); } 
  if (tmp &  MMAU_QIF) { pCallbackMMAU ( QIF_CALLBACK); } 
 
  /* clear interrupt flags while preserving instruction flags                 */ 
  MMAU_CSR_IF_CLR = tmp; 
} 

 

The first line of the service routine reads the status and control register (CSR). The next lines call 

conditionally a user callback function with information about the asserted “sticky” flag passed in the 

input argument. The last line of the code clears all asserted flags.  

2.4. DMA support 

The MMAU also provides an interface for DMA to launch a new arithmetic operation. When the 64-bit 

arithmetic unit completes the execution of the operation, it transitions to an idle state (BUSY=0). The 

http://fsls.co/doc/KM34P144M75SF0RM
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MMAU can be configured to generate the DMA request when the 64-bit arithmetic unit is not busy so 

that the user can use DMA to fetch the result and initiate execution of the new arithmetic operation. 

2.5. Access mode 

The MMAU can be accessed in both User Mode and Supervisor Mode. However, if the application 

needs to prevent any CPU/DMA accesses from User Mode, assert a supervisor-only (SO) control bit in 

the control and status register (CSR). When this bit is set, any access from User Mode is terminated with 

a bus error.  

NOTE 

The supervisor-only (SO) control bit can only be changed by the CPU in 

Supervisor Mode. 

2.6. Context save and restore  

When calling MMAU operations from the main software loop and also from interrupts or in nested 

interrupts, your software is responsible for saving and restoring MMAU registers. This is necessary 

because divide and square root operations are executing in more core clock cycles and therefore their 

interruption could lead to result mismatch. This problem can be solved with functions for saving and 

restoring MMAU registers and calling them at the entry and exit of the interrupt routine. Example 4 

shows the implementation of the MMAU_StoreState function. 

Example 4. MMAU_StoreState function 
#define store_state(p)                                                         \ 
{                                                                              \ 
  register uint32 _src = (uint32)(MMAU__REGRW|MMAU__X0);                       \ 
  register uint32 _dst = (uint32)p;                                            \ 
  __asm volatile                                                               \ 
  (                                                                            \ 
    "ldm %0 ,{%0,r2,r3,r4,r5,r6,r7}\n"                                         \ 
    "stm %1!,{%0,r2,r3,r4,r5,r6,r7}\n"                                         \ 
    :"=l"(_src),"=l"(_dst):"0"(_src),"1"(_dst):"r2","r3","r4","r5","r6","r7"   \ 
  );                                                                           \ 
} 
/***************************************************************************//*! 
 * @brief   Store MMAU internal state to the software stack. 
 * @details The @ref MMAU_StoreState function stores MMAU internal state 
 *          including operand, accumulator and control/status registers to the 
 *          software stack. 
 * @note    Call this function at entry point of any interrupt service routine 
 *          which uses @ref mmau_macros. At the exit of such interrupt service 
 *          routine you should call @ref MMAU_RestoreState function. 
 * @see     @ref MMAU_RestoreState 
 ******************************************************************************/ 
#define MMAU_StoreState() tMMAU_STATE volatile __tmp; store_state(&__tmp)  

 

The MMAU_StoreState function reads the state of the X0, X1, X2, X3, A0, A1, and CSR registers and 

stores them on the stack. This function must be called at the beginning of each interrupt service routine 

that calls MMAU operations.  
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Example 5 shows the implementation of the MMAU_RestoreState function. 

Example 5. MMAU_RestoreState function 
#define restore_state(p)                                                       \ 
{                                                                              \ 
  register uint32 _src = (uint32)p;                                            \ 
  register uint32 _dst = (uint32)(MMAU__REGRW|MMAU__X0);                       \ 
  __asm volatile                                                               \ 
  (                                                                            \ 
    "ldm %0 ,{%0,r2,r3,r4,r5,r6,r7}\n"                                         \ 
    "stm %1!,{%0,r2,r3,r4,r5,r6,r7}\n"                                         \ 
    :"=l"(_src),"=l"(_dst):"0"(_src),"1"(_dst):"r2","r3","r4","r5","r6","r7"   \ 
  );                                                                           \ 
} 
/***************************************************************************//*! 
 * @brief   Restore MMAU internal state from the software stack. 
 * @details The @ref MMAU_RestoreState function restores MMAU internal state 
 *          including operand, accumulator and control/status registers from the 
 *          software stack. 
 * @note    Call this function at exit of any interrupt service routine 
 *          which uses @ref mmau_macros. At entry point of such interrupt 
 *          service routine you should call @ref MMAU_StoreState function. 
 * @see     @ref MMAU_StoreState 
 ******************************************************************************/ 
#define MMAU_RestoreState() restore_state(&__tmp) 

 

The MMAU_RestoreState function restores the state of the X0, X1, X2, X3, A0, A1, and CSR registers 

from the stack. This function is complementary to the MMAU_StoreState function and it must be called 

at the end of each interrupt service routine calling MMAU operations. 

Figure 3 shows steps to save and restore MMAU registers in an application, where both the main 

function and the interrupt service routine uses MMAU to boost computation performance.  

 

 

Figure 3. Saving and restoring MMAU registers 

In time t1, the user calls the l_sqr_d function to initiate the QSQRD operation. In time t2 the QSQRD 

operation starts to execute and the calculation causes the access to the output operand registers A0 and 

A1 to be stalled until the calculation completes.  

Time t
1
 t

3
 t

4
 t

5
 t

6
 

QSQRD operation 
takes max. 33 clock 

cycles 

t
2
 

Call of the l_sqr_d software wrapper 
initiates QSQRD operation 

MMAU_StoreState 
function call; prolonged 
by QSQRD operation 

MMAU_RestoreState 
function call 

The result of the 
QSQRD operation is 
stored in a variable 

Main function 

Interrupt service routine 



Function examples and performance 

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015 

10  Freescale Semiconductor, Inc. 

 

In time t3, interrupt occurs and therefore the software transitions to an interrupt service routine. The first 

function that executes at interrupt entry is the MMAU_StoreState function. This function completes in 

time t4 only after output operand registers A0 and A1 are updated wih the result of the QSQRD 

operation and all MMAU registers stored on the stack. In time t5 the user restores MMAU registers from 

the stack by calling the MMAU_RestoreState function.  

Finally, in time t6 the interrupt service routine finishes and the software execution transitions back to the 

l_sqr_d function, which reads the square root value from A0 and A1 output operand registers and stores 

it in a variable. 

The next section demonstrates the capabilities of the MMAU in computing signal processing algorithms. 

Several algorithms, widely used in signal processing applications, have been implemented using MMAU 

operations and their performance have been analyzed.  

3. Function examples and performance 

This section shows use of the MMAU in Power series, IIR filter, Goertzel algorithm, and FFT 

computing. The algorithms were implemented in C-language, and their accuracy and performance 

verified on the TWR-KM34Z75M Tower System Module.  

NOTE 

The IAR Embedded Workbench
®
 for ARM

®
 (version 7.40.1) tool was 

used to obtain performance data for all functions. The code was compiled 

with full optimization for execution speed and MKM34Z256VLQ7 target. 

The MKM34Z256VLQ7 device was clocked at 2 MHz using the Internal 

Reference Clock. The execution times were measured in number of core 

clock cycles using SysTick timer. The flash and RAM requirements are 

represented in bytes. 

3.1. Power series  

A power series represents an infinite polynomial on variable and can be used to define a wide variety of 

functions. This section shows the implementation of the sin(πx) function using the power series derived 

for x=0. 

 

Example 6 shows source code for the sin(πx) function implemented using fractional arithmetic. The 

input argument, a 32-bit two's-complement value represents an angle in range –π and π. The output of 

the function is also a 32-bit two's-complement value and represents the sine of the input angle in range 

from -1 to 1. 

Example 6. Sine function 
static const frac64 sin_coef[] = 
{ 
  FRAC64( 0.50000000000000), FRAC64(-0.82246703342411), FRAC64( 0.40587121264168), 
  FRAC64(-0.09537591206104), FRAC64( 0.01307392390883), FRAC64(-0.00117304051773), 
  FRAC64( 0.00006930000000) /* 0.00007421439652 */ 
}; 
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/****************************************************************************//*! 
 * @brief  Compute sine of x. 
 * @param  x  - Input arguments x = 0x80000000 to 0x7fffffff, corresponds to the 
 *              angle -pi to pi. 
 * @return  Function returns sine of input angle in range -1 to 1. 
 *******************************************************************************/ 
static frac32 sin (frac32 x) 
{ 
  if      (x > FRAC32( 0.5)) { x = FRAC32( 1.0)-x; } 
  else if (x < FRAC32(-0.5)) { x = FRAC32(-1.0)-x; } 
  mul_dl (sin_coef[6],x);                         /* acc=    x*sin_coef[6]    */ 
  maca_dl(sin_coef[5],x);                         /* acc=acc*x+sin_coef[5]    */ 
  mula_l (            x);                         /* acc=acc*x                */ 
  maca_dl(sin_coef[4],x);                         /* acc=acc*x+sin_coef[4]    */ 
  mula_l (            x);                         /* acc=acc*x                */ 
  maca_dl(sin_coef[3],x);                         /* acc=acc*x+sin_coef[3]    */ 
  mula_l (            x);                         /* acc=acc*x                */ 
  maca_dl(sin_coef[2],x);                         /* acc=acc*x+sin_coef[2]    */ 
  mula_l (            x);                         /* acc=acc*x                */ 
  maca_dl(sin_coef[1],x);                         /* acc=acc*x+sin_coef[1]    */ 
  mula_l (            x);                         /* acc=acc*x                */ 
  maca_dl(sin_coef[0],x);                         /* acc=acc*x+sin_coef[0]    */ 
   mula_l (            x);                         /* acc=acc*x                */ 
  return l_mula_l (FRAC32(0.78539816339745))<<3;  /* acc=acc*2*pi             */ 
} 

 

This example shows the technique for power series computing using maca_dl
2
 and mula_l

3
 math 

functions. These functions call multiply-accumulate and multiply MMAU operations producing 64-bit 

results. 

Table 6 shows the performance of the sine function implemented using MMAU.   

Table 6. Sin function performance 

Function Code size Stack size Clock cycles 

sine  144 8 122 

3.2. IIR filter 

Infinite Impulse Response (IIR) filters are used to filter x[ ] to produce y[ ] with information you are 

interested in. This equation demonstrates the use of the MMAU for computing the 4th order low-pass 

filter.  

  

 

Example 7 shows the source code for computing l_iir_4ord function. The input argument x[ ] as well as 

coefficients of the IIR filter b[ ] and a[ ] are represented in a 32-bit two's-complement format.  

 
 
 
 
2
 maca_dl - function multiplies 32-bit fractional value by 64-bit fractional value stored in the A10 registers and add product with 

64-bit fractional value; product is stored in A10 registers for next computation. 
3
 mula_l - function multiplies 32-bit fractional value by 64-bit fractional value stored in the A10 registers; product is stored in 

A10 registers for next computation 
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The output of the function is also a 32-bit two's-complement value. All filter taps are calculated in a 64-

bit precision to maximize filter accuracy. 

Example 7. 4th order infinite impulse response filter 
/****************************************************************************//*! 
 * @brief  Compute 4th order infinite impulse response filter (IIR) iteration: 
 *         y(n) = b(0)*x(n)+b(1)*x(n-1)+b(2)*x(n-2)+b(3)*x(n-3)+b(4)*x(n-4) 
 *                +a(1)*y(n-1)+a(2)*y(n-2)+a(3)*y(n-3)+a(4)*y(n-4)  
 *         Internal accumulations don't saturate. The IIR filter output is within 
 *         32-bit fractional range from 0x80000000 to 0x7fffffff. 
 * @param  x  - Input fractional value represented in 32-bit fractional format 
 *              "x(n)". 
 * @param *pb - Pointer to filter constants "b" represented in 32-bit fractional 
 *              format "b(0) ... b(4)". 
 * @param *pa - Pointer to filter constants "a" represented in 32-bit fractional 
 *              format "-a(1) ... -a(4)". 
 * @param sc  - Filter constants scaling. 
 * @param *px - Pointer to previous input values represented in 32-bit fractional 
 *              format "x(n-1) ... x(n-4)". 
 * @param *py - Pointer to previous output values represented in 32-bit fractional 
 *              format "y(n-1) ... y(n-4)". 
 * @return  Function returns 32-bit value in fractional format. 
 *******************************************************************************/ 
static frac32 l_iir_4ord (frac32 x, const frac32 *pb, const frac32 *pa, int16 sc, 
                          frac32 *px, frac32 *py) 
{ 
  register frac32 y; 
  /* actual filter output value calculation with using MMAU instructions      */ 
  mul_ll(*(pb  ),      x);                      /* acc=    b[0]*x[0]          */ 
  mac_ll(*(pb+1),*(px  ));                      /* acc=acc+b[1]*x[1]          */ 
  mac_ll(*(pb+2),*(px+1));                      /* acc=acc+b[2]*x[2]          */ 
  mac_ll(*(pb+3),*(px+2));                      /* acc=acc+b[3]*x[3]          */ 
  mac_ll(*(pb+4),*(px+3));                      /* acc=acc+b[4]*x[4]          */ 
  mac_ll(*(py  ),*(pa  ));                      /* acc=acc+a[1]*y[1]          */ 
  mac_ll(*(py+1),*(pa+1));                      /* acc=acc+a[2]*y[2]          */ 
  mac_ll(*(py+2),*(pa+2));                      /* acc=acc+a[3]*y[3]          */ 
  y = l_mac_ll(*(py+3),*(pa+3))<<sc;            /* y  =(acc+a[4]*y[4])<<sc    */ 
  /* shifting previous input values                                           */ 
  *(px+3)=*(px+2); *(px+2)=*(px+1); *(px+1)=*(px); *(px)= x; 
  /* shifting previous output values                                          */ 
  *(py+3)=*(py+2); *(py+2)=*(py+1); *(py+1)=*(py); *(py)= y; 
  return y; 
} 

 

The MMAU can compute such filter function with 64-bit precision quickly taking 18.6 core clock cycles 

per TAP. This excellent performance is achieved as a result of mul_ll
 4
 and mac_ll

 5
 math functions. 

These functions call multiply and multiply-accumulate MMAU operations producing 64-bit results. 

 

 

 

 
 
 
 
4
 mul_ll - function multiplies two 32-bit fractional values; product is stored in A10 registers of the MMAU for next computation. 

5
 mac_ll - function multiplies two 32-bit fractional values and add product with value stored in the A10 register of the MMAU; 

product is stored in A10 registers of the MMAU for next computation 
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Table 7 shows performance of the l_iir_4ord function implemented using MMAU.   

Table 7. l_iir_4ord function performance.  

Function Code size Stack size Clock cycles 

l_iir_4ord 128 28 167 

3.3. Goertzel algorithm  

The Goertzel algorithm is very useful when detecting a small amount of frequencies (magnitudes and 

phases) of the digital signal [1]. It computes real and imaginary frequency components as a regular 

Discrete Fourier Transform (DFT) or FFT. 

Example 8 shows the source code of the function for computing Goertzel algorithm. The input digital 

signal x[ ] of length num is processed by the function to compute the magnitude of the specific harmonic 

harm. The input digital signal samples are represented in a 32-bit two's-complement format ranging 

from 0xff800000 to 0x007fffff. The function returns magnitude in a 32-bit two's-complement format in 

range from 0 to 0x007fffff. 

Example 8. Goertzel algorithm 
/****************************************************************************//*! 
 * @brief  Compute cosine of x. 
 * @param  x  - Input argument x = 0x80000000 to 0x7fffffff, corresponds to the 
 *              angle -pi to pi. 
 * @return  Function returns cosine of input angle in range -1 to 1. 
 *******************************************************************************/ 
static frac32 cos (frac32 x) 
{ 
  return sin(x+FRAC32(0.5));                       /* sin(x+pi/2)              */ 
} 
/****************************************************************************//*! 
 * @brief  Compute magnitude of the harmonic of the signal waveform x. 
 * @param  num - Number of samples. 
 *         harm- Harmonic of the signal waveform to be computed. 
 *         x   - Pointer to input signal samples. 
 * @return Function returns magnitude of the input signal waveform at given  
 *         harmonic.  
 *******************************************************************************/ 
static frac24 goertzel (register int num, register int harm, register const frac24 x[]) 
{ 
  register frac32 tmp2 = d_udiv_dl(d_umul_dl(FRAC32(2.0),harm),num), tmp1 = cos(tmp2); 
  register frac64 a2 = 0ll, a1 = x[0], tmp3; 
  register int i = 0; 
  while (++i < num) { tmp3 = a1; a1 = d_mul_dl(a1+a1,tmp1)+x[i]-a2; a2 = tmp3; } 
  tmp2 = d_sdiv_dl(d_mul_dl(a1,sin(tmp2)),num>>1); 
  tmp1 = d_sdiv_dl(d_mul_dl(a1,tmp1)-a2  ,num>>1); 
  mul_ll(tmp1,tmp1); 
  mac_ll(tmp2,tmp2); 
  return l_sqra(); 
} 
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In addition to elementary multiply and multiply-accumulate operations of the MMAU, the Goertzel 

algorithm also uses more advanced divide and square root operations. These operations are called by 

d_udiv_dl
 6
 , d_sdiv_dl 

7
, and l_sqra

 8
 function wrappers and they execute with a maximum of 33 clock 

cycles depending on the values of the input arguments. The internal computations are performed with  

64-bit precision but the result is truncated to a 32-bit value. 

Table 8 shows the performance of the Goertzel function implemented using MMAU. 

Table 8. Goertzel function performance  

Function Code size Stack size Clock cycles 

Goertzel  200 48 442.8+43.4*num
9
 

3.4. Fast Fourier transform  

The FFT is one of the most important topics in Digital Signal Processing. It is extremely important in 

the area of frequency (spectrum) analysis; for example, voice recognition, digital coding of acoustic, 

detection of machine vibration, signal filtration, and solving partial differential equations. It transforms a 

time-domain digital signal into a frequency-domain representation.  

The source code of the fft2dt function written for computing radix-2 real FFT transformation is shown in 

Example 9. This function transforms x[ ] of length 2
m
 into 2

(m-1)
 sine and cosine signal components 

stored in x[ ] and im[ ]. The input and output vectors are represented in a 32-bit two's-complement 

format with range from 0xff800000 to 0x007fffff. Similarly to the Goertzel function, the fft2dt function 

returns magnitudes in a 32-bit two's-complement format with a range from 0 to 0x007fffff. 

Example 9. FFT algorithm 
/****************************************************************************//*! 
 * @brief  Compute Fast Fourier Transfrom (FFT) of the input signal waveform x. 
 * @param  m  - 2^m point FFT. 
 *         x  - Pointer to 2^m input signal samples and 2^(m-1) sine coefficients 
 *              computed by the FFT. 
 *         im - Pointer to 2^(m-1) cosine coefficients computed by the FFT. 
 *         mag- Pointer to 2^(m-1) signal magnitudes computed by the FFT. 
 *******************************************************************************/ 
static void fft2dt (int m, frac24 x[], frac24 im[], frac24 mag[]) 
{ 
  register uint16 n = 1 << m, i, j, k, l, n1, n2; 
  register frac24 tmp; 
  register frac32 e, a, c, s, xt, yt; 
  im[0] = 0l; im[n-1] = 0l; 
  /* index reversal                                                           */ 
  for (j = 1, i = 2; i < n; i++) 
  { 
    im[i] = 0l; k = n >> 1; 
    while (k < j) { j -= k; k >>= 1; } 
    j += k; 

 
 
 
 
6
 d_udiv_dl – function divides 64-bit unsigned value by 32-bit unsigned value returning a 64-bit unsigned quotient. 

7
 d_sdiv_dl – function divides 64-bit integer value by 32-bit integer value returning a 64-bit integer quotient. 

8
 l_sqra - function computes and returns a 32-bit fractional square root of the radicand stored in the A10 register. 

9
 num is a number of points in the data sequence. 
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    if (i < j) { tmp = x[j-1]; x[j-1] = x[i-1]; x[i-1] = tmp; } 
  } 
  /* main fft loops                                                           */ 
  for (n1 = 1, k = 1; k <= m; k++) 
  { 
    n2 = n1; n1 = n2 << 1; e = l_udiv_ll (0xffffffff,n1); 
    for (a = 0, j = 0; j < n2; j++) 
    { 
      c = cos (a); s = sin (a); a = d_umul_ll (e,j+1); 
      for (i = j; i < n; i += n1) 
      { 
        l = i+n2; 
        mul_ll (s, im[l]); xt = l_mac_ll (c, x[l]); 
        mul_ll (s, -x[l]); yt = l_mac_ll (c,im[l]); 
        x[l]  =  x[i]-xt; x[i]  =  x[i]+xt; 
        im[l] = im[i]-yt; im[i] = im[i]+yt; 
      } 
    } 
  } 
  /* compute amplitudes                                                       */ 
  for (i=0; i < n; i++) 
  { 
    mul_ll (x[i],x[i]); mac_ll (im[i],im[i]); mag[i] = l_sqra() >> (m-1); 
  } 
} 

 

The MMAU accelerates FFT computing in more areas. The inner loops including sine and cosine 

computing, are greatly accelerated by the multiply and multiply-accumulate MMAU operations. In 

addition, magnitude computing is boosted by square root computing.  

The main loop performs internal computations with 64-bit precision to achieve better accuracy of 

conversion time-domain signals into frequency-domain representation. 

Table 9 shows the performance of the fft2dt function implemented using MMAU.   

Table 9. fft2dt function performance  

Function Code size Stack size Clock cycles 

fft2dt 722 72 -2726.3+782.7*2m
10

 

3.5. Performance summary  

Figure 4 shows the performance of functions implemented with 64-bit precision and boosted by 

MMAU.  

 
 
 
 
10

 2m is a number of point DIT FFT. 
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Figure 4. Function implementation summary 

The code density of all functions is high due to very efficient software wrappers that are used to call 

math operations. The fast computing is primarily driven by the capabilities of the 64-bit arithmetic unit, 

a hardwired logic circuit designed to calculate basic operations such as multiply, multiply-accumulate in 

a single clock cycle, and more advanced operations such as divide and square root with a maximum of 

33 clock cycles. 

4. Summary 

This application note explores key characteristics of the 64-bit memory-mapped arithmetic unit that has 

been integrated on the Kinetis-M microcontroller family. These microcontrollers feature Σ-Δ ADCs with 

24-bit dynamic range of measurement. It was demonstrated that the MMAU is capable to compute 

complex algorithms with 24-/32-bit input arguments very quickly and with no reduction in accuracy. 

The MMAU architecture allows the development of software wrappers intended to execute MMAU 

operations with the least possible overhead. In total, 140 software wrappers for math functions were 

written to give users full access to this module and to execute saturated and non-saturated operations 

performed on signed integer, unsigned integer, and fractional data types. The software wrappers are 

included in Kinetis-M Software Development Kit (SDK) and bare-metal software drivers (see 

document: KMSWDRVAPIRM). 

The capabilities of the MMAU in computing deep signal processing algorithms were demonstrated. It 

has been shown that multiply-accumulate and multiply elementary MMAU operations along with more 

advanced divide and square root operations boost computing of the Power series, IIR filter, Goertzel 

algorithm and FFT. The efficient implementation of these algorithms, their accuracy, and their 

performance has been verified on the TWR-KM34Z75M board. The source code of functions including 

project files for IAR Embedded Workbench for ARM are delivered together with this application note.   

http://fsls.co/doc/KMSWDRVAPIRM
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The filter-based and FFT-based metering libraries from Freescale are written to leverage capabilities of 

the MMAU [3], [5].  

The former library, namely a high-precision implementation optimized for Cortex-M0+ w/ MMAU 

executes up to 2.35 times faster than on the ARM Cortex-M0+ core and 1.15 times faster than on the 

Cortex-M4 core.  

The architectural approach of combining the low-cost, power-efficient Cortex-M0+ core with an 

optimized MMAU provides substantial product differentiation for the Kinetis-M microcontroller family. 

5. References 

[1] Handbook for Digital Signal Processing, Sanjit K. Mitra, James F. Kaiser (John Wiley & Sons, 1993, 

USA) 

The following documents can be found on www.freescale.com 

[2] Kinetis KM34 Sub-Family Reference Manual (document: KM34P144M75SF0RM) 

[3] Filter-Based Algorithm for Metering Applications (document: AN4265) 

[4] Kinetis-M Bare-metal Software Drivers (document: KMSWDRVAPIRM) 

[5] FFT-Based Algorithm for Metering Applications (document: AN4255) 

Additional documents can be found on the Kinetis M Series product page and the Kinetis KM1 product 

page. 
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6. Revision history 
Table 10. Revision history 

Revision number Date Substantive changes 

0 09/2015 Initial release 

1 10/2015 Figure 4 updated axis titles 

Additional item added to References 
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