
© 2015 Freescale Semiconductor, Inc. All rights reserved.

Exploring the 64-bit Memory Mapped

Arithmetic Unit

By Martin Mienkina

1. Introduction

In embedded application spaces such as power

metering, hardware support for high-dynamic range

arithmetic operations is important to maximize system

performance and minimize device power dissipation.

The microcontrollers typically used for power metering

applications integrate Σ-Δ ADCs with 24-bit or higher

dynamic range of measurement.

In order to take advantage of such high resolution

measurements, their processing must be performed with

at least 24-bit precision. The analysis of filter-based

metering algorithms, targeted to the power metering

application (see document: AN4265), indicated that

critical operations, take 64% of the computation time,

are 64-bit multiply, multiply-accumulate, divide, and

square root. This is shown in Figure 1.

Freescale Semiconductor, Inc. Document Number: AN5189

Application Note Rev. 1 , 10/2015

Contents
1. Introduction .. 1
2. Architecture and programming model 2

2.1. Arithmetic operations .. 5
2.2. Operation and error indicators 6
2.3. Interrupt generation and processing 7
2.4. DMA support.. 7
2.5. Access mode... 8
2.6. Context save and restore 8

3. Function examples and performance 10
3.1. Power series ... 10
3.2. IIR filter ... 11
3.3. Goertzel algorithm .. 13
3.4. Fast Fourier transform ... 14
3.5. Performance summary .. 15

4. Summary .. 16
5. References .. 17
6. Revision history .. 18

http://fsls.co/doc/AN4265

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

2 Freescale Semiconductor, Inc.

Figure 1. Filter-based metering algorithms: computation split

Conventional general-purpose processors are optimized for standard fixed-length applications and often

cannot support the requirements for extended math precision. Suppliers address requirements for

extended math precision by either taking advantage of more advanced core architectures, for example,

the ARM
®

 Cortex
®
-M4 with an FPU module, or by integrating a dedicated math coprocessor module.

Both architectural options were carefully evaluated for the Kinetis-M microcontroller family targeted to

metering applications. In order to accelerate computation of the metering algorithms on this

microcontroller family, the ARM Cortex-M0+ core platform has been integrated together with a 64-bit

memory-mapped arithmetic unit (see document: KM34P144M75SF0RM).

2. Architecture and programming model

As a memory-mapped block located on a system bus port, the 64-bit memory-mapped arithmetic unit

(MMAU) responds based on memory addresses to its programming model. The hardware blocks of the

MMAU include: hardware interface, operation decoder with registers, and arithmetic unit. See Figure 2.

http://fsls.co/doc/KM34P144M75SF0RM

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 3

Figure 2. Internal structure of the memory-mapped arithmetic unit

While the performance of the standalone arithmetic unit can provide a several-fold increase for high-

dynamic range calculations versus the most common microcontroller cores, the computational

performance of the microcontroller would suffer without an efficient hardware interface. The hardware

interface comprises an operation decoder and couples a 64-bit arithmetic unit to the ARM Cortex-M0+

core. The 64-bit arithmetic unit is implemented as a hardwired logic circuit designed to calculate basic

operations such as multiply, multiply-accumulate in a single clock cycle, and more advanced operations

such divide and square-root in several clock cycles.

In order to maximize computation throughput, the hardware interface was based on the principle of

decorated memory-mapped computation operation launching. Table 1 shows an example of a decorated

memory-mapped address range.

X0
X1
X2
X3

A1

Operation Decoder

System Bus Address

64 - bit Arithmetic
Unit

System Bus R/W Data

Operation
trigger

Operation
select

Address Range(s)
Memory Map LUT

Hardware
Interface

CSR
CSR_IF_LCR

A0

Registers

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

4 Freescale Semiconductor, Inc.

Table 1. Part of the decorated memory map for arithmetic operations

Decorated operation code
Register

identifier[4:2] Register

name

Operation

offset

address[11:0]

Operation

mnemonic

Operation

brief

description
1

Address[11:2]

11 10 9 8 7 6 5 4 3 2

- 0 1 0 1 1 0 0 0 0 X0 0x2C0 (not used)

32=√64
QSRD

A10=√X32

- 0 1 0 1 1 0 0 0 1 X1 0x2C4 (not used)

- 0 1 0 1 1 0 0 1 0 X2 0x2C8 (LSW of radicand)

- 0 1 0 1 1 0 0 1 1 X3 0x2CC (MSW of radicand)

- 0 1 0 1 1 0 1 0 0 A0 0x2D0 (LSW of square root)

- 0 1 0 1 1 0 1 0 1 A1 0x2D4 (MSW of square root)

S 1 0 0 0 1 0 0 0 0 X0 0x440 (not used)

64=64*32
QMULD

A10=X21*X3

S 1 0 0 0 1 0 0 0 1 X1 0x444 (multiplicand)

S 1 0 0 0 1 0 0 1 0 X2 0x448 (LSW of multiplier)

S 1 0 0 0 1 0 0 1 1 X3 0x44C (MSW of multiplier)

S 1 0 0 0 1 0 1 0 0 A0 0x450 (LSW of product)

S 1 0 0 0 1 0 1 0 1 A1 0x454 (MSW of product)

S 1 1 1 1 0 0 0 0 0 X0 0x780 (LSW of numerator)

64=64/64
SDIVDD

A10=X10/X32

S 1 1 1 1 0 0 0 0 1 X1 0x784 (MSW of numerator)

S 1 1 1 1 0 0 0 1 0 X2 0x788 (LSW of denominator)

S 1 1 1 1 0 0 0 1 1 X3 0x78C (MSW of denominator)

S 1 1 1 1 0 0 1 0 0 A0 0x790 (LSW of quotient)

S 1 1 1 1 0 0 1 0 1 A1 0x794 (MSW of quotient)

In Table 1, each address within the decorated memory-mapped address range comprises a decorated

operation code and register identifier pointing to a register to be accessed. The decorated operation code

also differentiates whether the operation returns a saturated or non-saturated result. Advantageously, by

implementing decorated operation launching within the hardware interface, a single memory access is

required to load an operand to the input operand register and trigger the 64-bit arithmetic unit to perform

the required arithmetic operation.

A 64=64/64 signed divide operation (SDIVDD) is given as an example to be performed by the MMAU.

It comprises the following write and read memory accesses:

Example 1. 64=64/64 divide operation
1. ADDR(0x780) NUM_L // write least-significant 32 bits of numerator to X0
2. ADDR(0x784) NUM_H // write most-significant 32 bits of numerator to X1
3. ADDR(0x788) DEN_L // write least-significant 32 bits of denominator to X2
4. ADDR(0x78C) DEN_H // write most-significant 32 bits of denominator to X3,

// select & trigger 64=64/64 operation
5. QUOT_L ADDR(0x790) // read least-significant 32 bits of result from A0
6. QUOT_H ADDR(0x794) // read most-significant 32 bits of result from A1

1
 It should be noted that a 2-digit numeric identifier suffix denotes 64-bit registers, for example, A10 refers to the concatenated

{A1, A0} register combination, etc. Furthermore, since all the registers are 32-bit (4 byte) values, the low-order two byte
address bits [1:0] are always 0 and thus have not been included within the table.

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 5

2.1. Arithmetic operations

The hardware interface allows development of simple, short, and very efficient software wrappers to

load operands to the 64-bit arithmetic unit and retrieve computed results.

Example 2 shows the software wrapper for a 64=64/64 divide operation written in GCC inline

assembler.

Example 2. Software wrapper for d_sdiv_dd operation
/***//*!
* @brief Divide two 64-bit integer values returning a 64-bit integer
* quotient.
* @details The @ref d_sdiv_dd function divides two 64-bit integer values
* returning a 64-bit integer quotient.
* @param dnum @ref int64 integer value.
* @param dden @ref int64 integer value.
* @return @ref int64 integer value.
* @note Quotient is stored in A10 register of the MMAU for next computation.
**/
#define d_sdiv_dd(dnum,dden) \
({ \
 register uint32 addr = (MMAU_SDIVDD|MMAU_X0); \
 register int64 out = (dnum); \
 register int64 inp = (dden); \
 asm volatile \
 (\
 "stm %0!,{%Q1,%R1}\n" \
 "stm %0!,{%Q2,%R2}\n" \
 "ldm %0!,{%Q1,%R1} ":"=l"(addr),"=l"(out):"l"(inp),"0"(addr),"1"(out) \
); \
 (int64)out; \
})

In total, 140 software wrappers for elementary and more advanced arithmetic functions were written to

give users full access to the MMAU integrated on the Kinetis-M microcontroller family. All software

wrapper functions sets for signed integer, unsigned integer and signed fractional data types are listed in

Table 2, Table 3, and Table 4.

Table 2. Software wrappers for signed integer data types

Return type SMUL SMULS SMAC SMACS SDIV SDIVS Load/Read

int32 — — — — l_sdiv_ll l_sdivs_ll l_srda

int64

d_smul_ll d_smuls_dl d_smac_ll d_smacs_ll d_sdiv_dl d_sdivs_dl d_srda

d_smul_dl d_smulas_l d_smac_dl d_smacs_dl d_sdiva_l d_sdivas_l

d_smula_l d_smaca_dl d_smacas_dl d_sdiv_dd d_sdivs_dd

 d_sdiva_d d_sdivas_d

void

smul_ll smuls_dl smac_ll smacs_ll sdiv_ll sdivs_ll slda_d

smul_dl smulas_l smac_dl smacs_dl sdiv_dl sdivs_dl

smula_l smaca_dl smacas_dl sdiva_l sdivas_l

 sdiv_dd sdivs_dd

 sdiva_d sdivas_d

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

6 Freescale Semiconductor, Inc.

Table 3. Software wrappers for unsigned integer data types

Return type UMUL UMULS UMAC UMACS UDIV USQR Load/Read

uint16 — — — — — s_usqr_l —

uint32 — — — — l_udiv_ll l_usqr_d l_urda

 l_usqra

uint64 d_umul_ll d_umuls_dl d_umac_ll d_umacs_ll d_udiv_dl — d_urda
 d_umul_dl d_umulas_l d_umac_dl d_umacs_dl d_udiva_l
 d_umula_l d_umaca_dl d_umacas_dl d_udiv_dd
 d_udiva_d

void umul_ll umuls_dl umac_ll umacs_ll udiv_ll usqr_l ulda_d
 umul_dl umulas_l umac_dl umacs_dl udiv_dl usqr_d
 umula_l umaca_dl umacas_dl udiva_l
 udiv_dd
 udiva_d

Table 4. Software wrappers for signed fractional data types

Return type MUL MULS MAC MACS DIV DIVS SQR Load/Read

frac16 — — — — — — s_sqr_l —

frac32

l_mul_ll l_muls_dl l_mac_ll l_macs_ll

l_div_ll l_divs_ll

l_sqr_d l_rda

l_mul_dl l_mulas_l l_mac_dl l_macs_dl l_sqra

l_mula_l l_maca_dl l_macas_dl

frac64

d_mul_ll d_muls_dl d_mac_ll d_macs_ll d_div_dl d_divs_dl

—

d_rda

d_mul_dl d_mulas_l d_mac_dl d_macs_dl d_diva_l d_divas_l

d_mula_l d_maca_dl d_macas_dl

void

mul_ll muls_dl mac_ll macs_ll div_ll divs_ll sqr_l lda_l

mul_dl mulas_l mac_dl macs_dl div_dl divs_dl sqr_d lda_d

mula_l maca_dl macas_dl diva_l divas_l

2.2. Operation and error indicators

The module reports configuration, operating state, and result status for each operation through the

control and status register (CSR).

Table 5 summarizes all operation indicators, error indicators, and trigger flags for interrupt generation

and DMA transfer supported by the MMAU.

Table 5. Operation and error indicators

Flag Description Set Clear Interrupt trigger DMA trigger

BUSY This read-only flag is asserted when the

MMAU is performing a divide or square

root. It is cleared when MMAU is idle

HW — Set CSR[DRE]
&&

CSR[BUSY]==0

DZIF Divide by Zero interrupt flag HW Set CSR_IF_CLR[DZIF] Set CSR[DZIE] && CSR[DZIF]==1 —

VFIF Multiply or divide overflow interrupt flag HW Set CSR_IF_CLR[VFIF] Set CSR[VFIE] && CSR[VFIF]==1 —

QIF Accumulation overflow interrupt flag HW Set CSR_IF_CLR[QIF] Set CSR[QIE] && CSR[QIF]==1 —

N Signed calculation result is negative

operation result status flag

SW/HW — —

DZ Divide by Zero operation result status

flag

SW/HW — —

V Multiply or divide overflow operation

result status flag

SW/HW — —

Q Accumulation overflow operation result

status flag

SW/HW — —

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 7

Firstly, the busy indicator (BUSY) reports the operation status of the module. This read-only bit is

asserted when the module is performing either divide or square root operation.

Secondly, the errors and status of math operations is reported through “sticky” flags on overflow for

multiply and divide operations (VIF), on overflow for accumulate operation (QIF), and on divide by

zero (DZIF). These flags also serve as trigger sources to generate a module interrupt event if their

respective interrupt enable flags are set. They can only be asserted by hardware and cleared by the user

application.

Finally, flags notifying the result status of each operation are also present and include the signed

calculation result is negative (N), divide by zero (DZ), multiply or divide overflow (V), and

accumulation overflow (Q) status flags. These flags are updated after each operation by hardware and

can be set/cleared in user application by the software.

NOTE

When MMAU is busy, the read and write accesses to result registers A1

and A0, and also write accesses to X3 input register and control and status

register CSR are stalled (using wait states).

2.3. Interrupt generation and processing

As already indicated, the MMAU is designed to respond to errors during operations by generating an

interrupt event. The MMAU interrupt is routed to the vector 36 of the Kinetis-M interrupt vector table

(see document: KM34P144M75SF0RM). Such error reporting is very useful for non-intrusive

debugging of the complex math algorithms.

Example 3 shows software routine for servicing all variety of interrupt events generated by the MMAU.

Example 3. MMAU interrupt service routine
void mmau_isr (void)
{
 /* read interrupt flags */
 register uint32 tmp = MMAU_CSR;

 /* process callback function */
 if (tmp & MMAU_DZIF) { pCallbackMMAU (DZIF_CALLBACK); }
 if (tmp & MMAU_VIF) { pCallbackMMAU (VIF_CALLBACK); }
 if (tmp & MMAU_QIF) { pCallbackMMAU (QIF_CALLBACK); }

 /* clear interrupt flags while preserving instruction flags */
 MMAU_CSR_IF_CLR = tmp;
}

The first line of the service routine reads the status and control register (CSR). The next lines call

conditionally a user callback function with information about the asserted “sticky” flag passed in the

input argument. The last line of the code clears all asserted flags.

2.4. DMA support

The MMAU also provides an interface for DMA to launch a new arithmetic operation. When the 64-bit

arithmetic unit completes the execution of the operation, it transitions to an idle state (BUSY=0). The

http://fsls.co/doc/KM34P144M75SF0RM

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

8 Freescale Semiconductor, Inc.

MMAU can be configured to generate the DMA request when the 64-bit arithmetic unit is not busy so

that the user can use DMA to fetch the result and initiate execution of the new arithmetic operation.

2.5. Access mode

The MMAU can be accessed in both User Mode and Supervisor Mode. However, if the application

needs to prevent any CPU/DMA accesses from User Mode, assert a supervisor-only (SO) control bit in

the control and status register (CSR). When this bit is set, any access from User Mode is terminated with

a bus error.

NOTE

The supervisor-only (SO) control bit can only be changed by the CPU in

Supervisor Mode.

2.6. Context save and restore

When calling MMAU operations from the main software loop and also from interrupts or in nested

interrupts, your software is responsible for saving and restoring MMAU registers. This is necessary

because divide and square root operations are executing in more core clock cycles and therefore their

interruption could lead to result mismatch. This problem can be solved with functions for saving and

restoring MMAU registers and calling them at the entry and exit of the interrupt routine. Example 4

shows the implementation of the MMAU_StoreState function.

Example 4. MMAU_StoreState function
#define store_state(p) \
{ \
 register uint32 _src = (uint32)(MMAU__REGRW|MMAU__X0); \
 register uint32 _dst = (uint32)p; \
 __asm volatile \
 (\
 "ldm %0 ,{%0,r2,r3,r4,r5,r6,r7}\n" \
 "stm %1!,{%0,r2,r3,r4,r5,r6,r7}\n" \
 :"=l"(_src),"=l"(_dst):"0"(_src),"1"(_dst):"r2","r3","r4","r5","r6","r7" \
); \
}
/***//*!
 * @brief Store MMAU internal state to the software stack.
 * @details The @ref MMAU_StoreState function stores MMAU internal state
 * including operand, accumulator and control/status registers to the
 * software stack.
 * @note Call this function at entry point of any interrupt service routine
 * which uses @ref mmau_macros. At the exit of such interrupt service
 * routine you should call @ref MMAU_RestoreState function.
 * @see @ref MMAU_RestoreState
 **/
#define MMAU_StoreState() tMMAU_STATE volatile __tmp; store_state(&__tmp)

The MMAU_StoreState function reads the state of the X0, X1, X2, X3, A0, A1, and CSR registers and

stores them on the stack. This function must be called at the beginning of each interrupt service routine

that calls MMAU operations.

Architecture and programming model

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 9

Example 5 shows the implementation of the MMAU_RestoreState function.

Example 5. MMAU_RestoreState function
#define restore_state(p) \
{ \
 register uint32 _src = (uint32)p; \
 register uint32 _dst = (uint32)(MMAU__REGRW|MMAU__X0); \
 __asm volatile \
 (\
 "ldm %0 ,{%0,r2,r3,r4,r5,r6,r7}\n" \
 "stm %1!,{%0,r2,r3,r4,r5,r6,r7}\n" \
 :"=l"(_src),"=l"(_dst):"0"(_src),"1"(_dst):"r2","r3","r4","r5","r6","r7" \
); \
}
/***//*!
 * @brief Restore MMAU internal state from the software stack.
 * @details The @ref MMAU_RestoreState function restores MMAU internal state
 * including operand, accumulator and control/status registers from the
 * software stack.
 * @note Call this function at exit of any interrupt service routine
 * which uses @ref mmau_macros. At entry point of such interrupt
 * service routine you should call @ref MMAU_StoreState function.
 * @see @ref MMAU_StoreState
 **/
#define MMAU_RestoreState() restore_state(&__tmp)

The MMAU_RestoreState function restores the state of the X0, X1, X2, X3, A0, A1, and CSR registers

from the stack. This function is complementary to the MMAU_StoreState function and it must be called

at the end of each interrupt service routine calling MMAU operations.

Figure 3 shows steps to save and restore MMAU registers in an application, where both the main

function and the interrupt service routine uses MMAU to boost computation performance.

Figure 3. Saving and restoring MMAU registers

In time t1, the user calls the l_sqr_d function to initiate the QSQRD operation. In time t2 the QSQRD

operation starts to execute and the calculation causes the access to the output operand registers A0 and

A1 to be stalled until the calculation completes.

Time t
1
 t

3
 t

4
 t

5
 t

6

QSQRD operation
takes max. 33 clock

cycles

t
2

Call of the l_sqr_d software wrapper
initiates QSQRD operation

MMAU_StoreState
function call; prolonged
by QSQRD operation

MMAU_RestoreState
function call

The result of the
QSQRD operation is
stored in a variable

Main function

Interrupt service routine

Function examples and performance

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

10 Freescale Semiconductor, Inc.

In time t3, interrupt occurs and therefore the software transitions to an interrupt service routine. The first

function that executes at interrupt entry is the MMAU_StoreState function. This function completes in

time t4 only after output operand registers A0 and A1 are updated wih the result of the QSQRD

operation and all MMAU registers stored on the stack. In time t5 the user restores MMAU registers from

the stack by calling the MMAU_RestoreState function.

Finally, in time t6 the interrupt service routine finishes and the software execution transitions back to the

l_sqr_d function, which reads the square root value from A0 and A1 output operand registers and stores

it in a variable.

The next section demonstrates the capabilities of the MMAU in computing signal processing algorithms.

Several algorithms, widely used in signal processing applications, have been implemented using MMAU

operations and their performance have been analyzed.

3. Function examples and performance

This section shows use of the MMAU in Power series, IIR filter, Goertzel algorithm, and FFT

computing. The algorithms were implemented in C-language, and their accuracy and performance

verified on the TWR-KM34Z75M Tower System Module.

NOTE

The IAR Embedded Workbench
®
 for ARM

®
 (version 7.40.1) tool was

used to obtain performance data for all functions. The code was compiled

with full optimization for execution speed and MKM34Z256VLQ7 target.

The MKM34Z256VLQ7 device was clocked at 2 MHz using the Internal

Reference Clock. The execution times were measured in number of core

clock cycles using SysTick timer. The flash and RAM requirements are

represented in bytes.

3.1. Power series

A power series represents an infinite polynomial on variable and can be used to define a wide variety of

functions. This section shows the implementation of the sin(πx) function using the power series derived

for x=0.

Example 6 shows source code for the sin(πx) function implemented using fractional arithmetic. The

input argument, a 32-bit two's-complement value represents an angle in range –π and π. The output of

the function is also a 32-bit two's-complement value and represents the sine of the input angle in range

from -1 to 1.

Example 6. Sine function
static const frac64 sin_coef[] =
{
 FRAC64(0.50000000000000), FRAC64(-0.82246703342411), FRAC64(0.40587121264168),
 FRAC64(-0.09537591206104), FRAC64(0.01307392390883), FRAC64(-0.00117304051773),
 FRAC64(0.00006930000000) /* 0.00007421439652 */
};

Function examples and performance

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 11

/**//*!
 * @brief Compute sine of x.
 * @param x - Input arguments x = 0x80000000 to 0x7fffffff, corresponds to the
 * angle -pi to pi.
 * @return Function returns sine of input angle in range -1 to 1.
 ***/
static frac32 sin (frac32 x)
{
 if (x > FRAC32(0.5)) { x = FRAC32(1.0)-x; }
 else if (x < FRAC32(-0.5)) { x = FRAC32(-1.0)-x; }
 mul_dl (sin_coef[6],x); /* acc= x*sin_coef[6] */
 maca_dl(sin_coef[5],x); /* acc=acc*x+sin_coef[5] */
 mula_l (x); /* acc=acc*x */
 maca_dl(sin_coef[4],x); /* acc=acc*x+sin_coef[4] */
 mula_l (x); /* acc=acc*x */
 maca_dl(sin_coef[3],x); /* acc=acc*x+sin_coef[3] */
 mula_l (x); /* acc=acc*x */
 maca_dl(sin_coef[2],x); /* acc=acc*x+sin_coef[2] */
 mula_l (x); /* acc=acc*x */
 maca_dl(sin_coef[1],x); /* acc=acc*x+sin_coef[1] */
 mula_l (x); /* acc=acc*x */
 maca_dl(sin_coef[0],x); /* acc=acc*x+sin_coef[0] */
 mula_l (x); /* acc=acc*x */
 return l_mula_l (FRAC32(0.78539816339745))<<3; /* acc=acc*2*pi */
}

This example shows the technique for power series computing using maca_dl
2
 and mula_l

3
 math

functions. These functions call multiply-accumulate and multiply MMAU operations producing 64-bit

results.

Table 6 shows the performance of the sine function implemented using MMAU.

Table 6. Sin function performance

Function Code size Stack size Clock cycles

sine 144 8 122

3.2. IIR filter

Infinite Impulse Response (IIR) filters are used to filter x[] to produce y[] with information you are

interested in. This equation demonstrates the use of the MMAU for computing the 4th order low-pass

filter.

Example 7 shows the source code for computing l_iir_4ord function. The input argument x[] as well as

coefficients of the IIR filter b[] and a[] are represented in a 32-bit two's-complement format.

2
 maca_dl - function multiplies 32-bit fractional value by 64-bit fractional value stored in the A10 registers and add product with

64-bit fractional value; product is stored in A10 registers for next computation.
3
 mula_l - function multiplies 32-bit fractional value by 64-bit fractional value stored in the A10 registers; product is stored in

A10 registers for next computation

Function examples and performance

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

12 Freescale Semiconductor, Inc.

The output of the function is also a 32-bit two's-complement value. All filter taps are calculated in a 64-

bit precision to maximize filter accuracy.

Example 7. 4th order infinite impulse response filter
/**//*!
 * @brief Compute 4th order infinite impulse response filter (IIR) iteration:
 * y(n) = b(0)*x(n)+b(1)*x(n-1)+b(2)*x(n-2)+b(3)*x(n-3)+b(4)*x(n-4)
 * +a(1)*y(n-1)+a(2)*y(n-2)+a(3)*y(n-3)+a(4)*y(n-4)
 * Internal accumulations don't saturate. The IIR filter output is within
 * 32-bit fractional range from 0x80000000 to 0x7fffffff.
 * @param x - Input fractional value represented in 32-bit fractional format
 * "x(n)".
 * @param *pb - Pointer to filter constants "b" represented in 32-bit fractional
 * format "b(0) ... b(4)".
 * @param *pa - Pointer to filter constants "a" represented in 32-bit fractional
 * format "-a(1) ... -a(4)".
 * @param sc - Filter constants scaling.
 * @param *px - Pointer to previous input values represented in 32-bit fractional
 * format "x(n-1) ... x(n-4)".
 * @param *py - Pointer to previous output values represented in 32-bit fractional
 * format "y(n-1) ... y(n-4)".
 * @return Function returns 32-bit value in fractional format.
 ***/
static frac32 l_iir_4ord (frac32 x, const frac32 *pb, const frac32 *pa, int16 sc,
 frac32 *px, frac32 *py)
{
 register frac32 y;
 /* actual filter output value calculation with using MMAU instructions */
 mul_ll(*(pb), x); /* acc= b[0]*x[0] */
 mac_ll(*(pb+1),*(px)); /* acc=acc+b[1]*x[1] */
 mac_ll(*(pb+2),*(px+1)); /* acc=acc+b[2]*x[2] */
 mac_ll(*(pb+3),*(px+2)); /* acc=acc+b[3]*x[3] */
 mac_ll(*(pb+4),*(px+3)); /* acc=acc+b[4]*x[4] */
 mac_ll(*(py),*(pa)); /* acc=acc+a[1]*y[1] */
 mac_ll(*(py+1),*(pa+1)); /* acc=acc+a[2]*y[2] */
 mac_ll(*(py+2),*(pa+2)); /* acc=acc+a[3]*y[3] */
 y = l_mac_ll(*(py+3),*(pa+3))<<sc; /* y =(acc+a[4]*y[4])<<sc */
 /* shifting previous input values */
 (px+3)=(px+2); *(px+2)=*(px+1); *(px+1)=*(px); *(px)= x;
 /* shifting previous output values */
 (py+3)=(py+2); *(py+2)=*(py+1); *(py+1)=*(py); *(py)= y;
 return y;
}

The MMAU can compute such filter function with 64-bit precision quickly taking 18.6 core clock cycles

per TAP. This excellent performance is achieved as a result of mul_ll
 4
 and mac_ll

 5
 math functions.

These functions call multiply and multiply-accumulate MMAU operations producing 64-bit results.

4
 mul_ll - function multiplies two 32-bit fractional values; product is stored in A10 registers of the MMAU for next computation.

5
 mac_ll - function multiplies two 32-bit fractional values and add product with value stored in the A10 register of the MMAU;

product is stored in A10 registers of the MMAU for next computation

Function examples and performance

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 13

Table 7 shows performance of the l_iir_4ord function implemented using MMAU.

Table 7. l_iir_4ord function performance.

Function Code size Stack size Clock cycles

l_iir_4ord 128 28 167

3.3. Goertzel algorithm

The Goertzel algorithm is very useful when detecting a small amount of frequencies (magnitudes and

phases) of the digital signal [1]. It computes real and imaginary frequency components as a regular

Discrete Fourier Transform (DFT) or FFT.

Example 8 shows the source code of the function for computing Goertzel algorithm. The input digital

signal x[] of length num is processed by the function to compute the magnitude of the specific harmonic

harm. The input digital signal samples are represented in a 32-bit two's-complement format ranging

from 0xff800000 to 0x007fffff. The function returns magnitude in a 32-bit two's-complement format in

range from 0 to 0x007fffff.

Example 8. Goertzel algorithm
/**//*!
 * @brief Compute cosine of x.
 * @param x - Input argument x = 0x80000000 to 0x7fffffff, corresponds to the
 * angle -pi to pi.
 * @return Function returns cosine of input angle in range -1 to 1.
 ***/
static frac32 cos (frac32 x)
{
 return sin(x+FRAC32(0.5)); /* sin(x+pi/2) */
}
/**//*!
 * @brief Compute magnitude of the harmonic of the signal waveform x.
 * @param num - Number of samples.
 * harm- Harmonic of the signal waveform to be computed.
 * x - Pointer to input signal samples.
 * @return Function returns magnitude of the input signal waveform at given
 * harmonic.
 ***/
static frac24 goertzel (register int num, register int harm, register const frac24 x[])
{
 register frac32 tmp2 = d_udiv_dl(d_umul_dl(FRAC32(2.0),harm),num), tmp1 = cos(tmp2);
 register frac64 a2 = 0ll, a1 = x[0], tmp3;
 register int i = 0;
 while (++i < num) { tmp3 = a1; a1 = d_mul_dl(a1+a1,tmp1)+x[i]-a2; a2 = tmp3; }
 tmp2 = d_sdiv_dl(d_mul_dl(a1,sin(tmp2)),num>>1);
 tmp1 = d_sdiv_dl(d_mul_dl(a1,tmp1)-a2 ,num>>1);
 mul_ll(tmp1,tmp1);
 mac_ll(tmp2,tmp2);
 return l_sqra();
}

Function examples and performance

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

14 Freescale Semiconductor, Inc.

In addition to elementary multiply and multiply-accumulate operations of the MMAU, the Goertzel

algorithm also uses more advanced divide and square root operations. These operations are called by

d_udiv_dl
 6
 , d_sdiv_dl

7
, and l_sqra

 8
 function wrappers and they execute with a maximum of 33 clock

cycles depending on the values of the input arguments. The internal computations are performed with

64-bit precision but the result is truncated to a 32-bit value.

Table 8 shows the performance of the Goertzel function implemented using MMAU.

Table 8. Goertzel function performance

Function Code size Stack size Clock cycles

Goertzel 200 48 442.8+43.4*num
9

3.4. Fast Fourier transform

The FFT is one of the most important topics in Digital Signal Processing. It is extremely important in

the area of frequency (spectrum) analysis; for example, voice recognition, digital coding of acoustic,

detection of machine vibration, signal filtration, and solving partial differential equations. It transforms a

time-domain digital signal into a frequency-domain representation.

The source code of the fft2dt function written for computing radix-2 real FFT transformation is shown in

Example 9. This function transforms x[] of length 2
m
 into 2

(m-1)
 sine and cosine signal components

stored in x[] and im[]. The input and output vectors are represented in a 32-bit two's-complement

format with range from 0xff800000 to 0x007fffff. Similarly to the Goertzel function, the fft2dt function

returns magnitudes in a 32-bit two's-complement format with a range from 0 to 0x007fffff.

Example 9. FFT algorithm
/**//*!
 * @brief Compute Fast Fourier Transfrom (FFT) of the input signal waveform x.
 * @param m - 2^m point FFT.
 * x - Pointer to 2^m input signal samples and 2^(m-1) sine coefficients
 * computed by the FFT.
 * im - Pointer to 2^(m-1) cosine coefficients computed by the FFT.
 * mag- Pointer to 2^(m-1) signal magnitudes computed by the FFT.
 ***/
static void fft2dt (int m, frac24 x[], frac24 im[], frac24 mag[])
{
 register uint16 n = 1 << m, i, j, k, l, n1, n2;
 register frac24 tmp;
 register frac32 e, a, c, s, xt, yt;
 im[0] = 0l; im[n-1] = 0l;
 /* index reversal */
 for (j = 1, i = 2; i < n; i++)
 {
 im[i] = 0l; k = n >> 1;
 while (k < j) { j -= k; k >>= 1; }
 j += k;

6
 d_udiv_dl – function divides 64-bit unsigned value by 32-bit unsigned value returning a 64-bit unsigned quotient.

7
 d_sdiv_dl – function divides 64-bit integer value by 32-bit integer value returning a 64-bit integer quotient.

8
 l_sqra - function computes and returns a 32-bit fractional square root of the radicand stored in the A10 register.

9
 num is a number of points in the data sequence.

Function examples and performance

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 15

 if (i < j) { tmp = x[j-1]; x[j-1] = x[i-1]; x[i-1] = tmp; }
 }
 /* main fft loops */
 for (n1 = 1, k = 1; k <= m; k++)
 {
 n2 = n1; n1 = n2 << 1; e = l_udiv_ll (0xffffffff,n1);
 for (a = 0, j = 0; j < n2; j++)
 {
 c = cos (a); s = sin (a); a = d_umul_ll (e,j+1);
 for (i = j; i < n; i += n1)
 {
 l = i+n2;
 mul_ll (s, im[l]); xt = l_mac_ll (c, x[l]);
 mul_ll (s, -x[l]); yt = l_mac_ll (c,im[l]);
 x[l] = x[i]-xt; x[i] = x[i]+xt;
 im[l] = im[i]-yt; im[i] = im[i]+yt;
 }
 }
 }
 /* compute amplitudes */
 for (i=0; i < n; i++)
 {
 mul_ll (x[i],x[i]); mac_ll (im[i],im[i]); mag[i] = l_sqra() >> (m-1);
 }
}

The MMAU accelerates FFT computing in more areas. The inner loops including sine and cosine

computing, are greatly accelerated by the multiply and multiply-accumulate MMAU operations. In

addition, magnitude computing is boosted by square root computing.

The main loop performs internal computations with 64-bit precision to achieve better accuracy of

conversion time-domain signals into frequency-domain representation.

Table 9 shows the performance of the fft2dt function implemented using MMAU.

Table 9. fft2dt function performance

Function Code size Stack size Clock cycles

fft2dt 722 72 -2726.3+782.7*2m
10

3.5. Performance summary

Figure 4 shows the performance of functions implemented with 64-bit precision and boosted by

MMAU.

10

 2m is a number of point DIT FFT.

Summary

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

16 Freescale Semiconductor, Inc.

Figure 4. Function implementation summary

The code density of all functions is high due to very efficient software wrappers that are used to call

math operations. The fast computing is primarily driven by the capabilities of the 64-bit arithmetic unit,

a hardwired logic circuit designed to calculate basic operations such as multiply, multiply-accumulate in

a single clock cycle, and more advanced operations such as divide and square root with a maximum of

33 clock cycles.

4. Summary

This application note explores key characteristics of the 64-bit memory-mapped arithmetic unit that has

been integrated on the Kinetis-M microcontroller family. These microcontrollers feature Σ-Δ ADCs with

24-bit dynamic range of measurement. It was demonstrated that the MMAU is capable to compute

complex algorithms with 24-/32-bit input arguments very quickly and with no reduction in accuracy.

The MMAU architecture allows the development of software wrappers intended to execute MMAU

operations with the least possible overhead. In total, 140 software wrappers for math functions were

written to give users full access to this module and to execute saturated and non-saturated operations

performed on signed integer, unsigned integer, and fractional data types. The software wrappers are

included in Kinetis-M Software Development Kit (SDK) and bare-metal software drivers (see

document: KMSWDRVAPIRM).

The capabilities of the MMAU in computing deep signal processing algorithms were demonstrated. It

has been shown that multiply-accumulate and multiply elementary MMAU operations along with more

advanced divide and square root operations boost computing of the Power series, IIR filter, Goertzel

algorithm and FFT. The efficient implementation of these algorithms, their accuracy, and their

performance has been verified on the TWR-KM34Z75M board. The source code of functions including

project files for IAR Embedded Workbench for ARM are delivered together with this application note.

http://fsls.co/doc/KMSWDRVAPIRM

Revision history

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

Freescale Semiconductor, Inc. 17

The filter-based and FFT-based metering libraries from Freescale are written to leverage capabilities of

the MMAU [3], [5].

The former library, namely a high-precision implementation optimized for Cortex-M0+ w/ MMAU

executes up to 2.35 times faster than on the ARM Cortex-M0+ core and 1.15 times faster than on the

Cortex-M4 core.

The architectural approach of combining the low-cost, power-efficient Cortex-M0+ core with an

optimized MMAU provides substantial product differentiation for the Kinetis-M microcontroller family.

5. References

[1] Handbook for Digital Signal Processing, Sanjit K. Mitra, James F. Kaiser (John Wiley & Sons, 1993,

USA)

The following documents can be found on www.freescale.com

[2] Kinetis KM34 Sub-Family Reference Manual (document: KM34P144M75SF0RM)

[3] Filter-Based Algorithm for Metering Applications (document: AN4265)

[4] Kinetis-M Bare-metal Software Drivers (document: KMSWDRVAPIRM)

[5] FFT-Based Algorithm for Metering Applications (document: AN4255)

Additional documents can be found on the Kinetis M Series product page and the Kinetis KM1 product

page.

http://www.freescale.com/
http://fsls.co/doc/KM34P144M75SF0RM
http://fsls.co/doc/AN4265
http://fsls.co/doc/KMSWDRVAPIRM
http://fsls.co/doc/AN4255
http://www.freescale.com/products/arm-processors/kinetis-cortex-m/m-series:KINETIS_M_SERIES?cof=0&am=0
http://www.freescale.com/products/arm-processors/kinetis-cortex-m/m-series/kinetis-km1x-50-mhz-high-accuracy-analog-front-end-security-microcontrollers-mcus:KM1x?fpsp=1&tab=Documentation_Tab
http://www.freescale.com/products/arm-processors/kinetis-cortex-m/m-series/kinetis-km1x-50-mhz-high-accuracy-analog-front-end-security-microcontrollers-mcus:KM1x?fpsp=1&tab=Documentation_Tab

Revision history

Exploring the 64-bit Memory Mapped Arithmetic Unit, Application Note, Rev. 1, 10/2015

18 Freescale Semiconductor, Inc.

6. Revision history
Table 10. Revision history

Revision number Date Substantive changes

0 09/2015 Initial release

1 10/2015 Figure 4 updated axis titles

Additional item added to References

Document Number: AN5189
Rev. 1

10/2015

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to

use Freescale products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does Freescale assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. “Typical” parameters that may

be provided in Freescale data sheets and/or specifications can and do vary in different

applications, and actual performance may vary over time. All operating parameters, including

“typicals,” must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale

sells products pursuant to standard terms and conditions of sale, which can be found at the

following address: freescale.com/SalesTermsandConditions.

Registered trademarks: Freescale, the Freescale logo, and Kinetis are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.

Trademarks: ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in

the EU and/or elsewhere. All rights reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Exploring the 64-bit Memory Mapped Arithmetic Unit
	1. Introduction
	2. Architecture and programming model
	2.1. Arithmetic operations
	2.2. Operation and error indicators
	2.3. Interrupt generation and processing
	2.4. DMA support
	2.5. Access mode
	2.6. Context save and restore

	3. Function examples and performance
	3.1. Power series
	3.2. IIR filter
	3.3. Goertzel algorithm
	3.4. Fast Fourier transform
	3.5. Performance summary

	4. Summary
	5. References
	6. Revision history

