

 AN12027
Connecting TFT LCD with LCD controller of LPC MCU
Rev. 1.0 — 21 August 2017 Application note

Document information
Info Content
Keywords LCD controller, LCD, TFT, GUI
Abstract This application note introduces the LCD controller on LPC

microcontrollers, TFT LCD parameters and timings together with
register settings of the LCD controller. The application note covers
advanced topics such as multi-frame buffering and ways to avoid
LCD tearing.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 2 of 33

Contact information
For more information, please visit: http://www.nxp.com

Revision history
Rev Date Description

1.0 20170821 Initial document

http://www.nxp.com/

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 3 of 33

1. Introduction
It is a general practice to use an LCD module with integrated LCD controller to interface
with a microcontroller. However, this arrangement increases the overall cost of the
system. Instead, we can use an LPC microcontroller with an on-chip LCD controller. For
a LPC microcontroller with on-chip LCD controller, a bare LCD panel can be interfaced.
As these microcontrollers, do not require the LCD module to have an LCD controller
integrated in it, the overall cost of the system is reduced.

2. LCD controller
Some NXP LPC series of MCUs have on-chip LCD controller to interface with bare TFT
and STN LCD panels. The LPC MCUs with on-chip LCD controller are shown in Fig 1.

.

Fig 1. LPC MCUs with on-chip LCD controller

The LPC MCUs with on-chip LCD controller allow users to use a "bare" parallel LCD
panel instead of LCD modules with integrated controllers. The bare LCD panels are less
expensive and have a better bandwidth than the LCD modules with integrated
controllers. The LCD modules with integrated controllers use SPI or GPIO interfaces.

2.1 Features
The LCD controller has, but is not limited to below key features
• AHB master interface to access frame buffer
• Dual 16-deep, 64-bit wide FIFOs for buffering incoming display data
• Supports Thin Film Transistor (TFT) color display
• Programmable display resolution up to 1024 × 768 (XGA)
• 16 bpp high-color non-palettized, for color STN and TFT
• 24 bpp true-color non-palettized, for color TFT
• Programmable timing for different display panels

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 4 of 33

• Frame, line, and pixel clock signals
• Supports little- and big-endian data formats
• LCD panel clock is generated from the LCD peripheral clock

The LCD controller in LPC MCU supports both TFT and STN LCD panels. The
application note describes the working of the LCD controller with true/high-color TFT
LCD panels.

3. Driving TFT LCD

3.1 LCD color format
The basic unit of an LCD display is the pixel. A TFT pixel consists of a triplet of dots (red,
green, blue) called as three element colors. Brightness of each element color within the
pixel is controlled by pixel data in the framebuffer; Section 3.4. The combination of
element colors with different brightness levels generate different colors; see Fig 2.

.

Fig 2. Composite Colors

The brightness data of each element color have various bit lengths. Usually, they have
length less than or equal to eight bits. If all colors are presented by 8-bit data, the color is
referred as "RGB888" or "BGR888" according to the sequence.

As it is difficult for digital logic to address multiples of three, a dummy byte is appended to
every 8-bit color. As a result, RGB888 requires four bytes per pixel. In embedded
systems, most popular color format is RGB565. It packs the RGB colors into a 16-bit word,
for easier hardware implementation and less memory requirement.

The capability of expressing 65536 colors (using 16-bit word) is sufficient for a high-quality
image.

3.1.1 RGB565 format
The pixel data in memory (little-endian) for RGB565 format is shown in Fig 3.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 5 of 33

.

Fig 3. Pixel data in memory of RGB565 format

Five bits (32 levels) are used to control the brightness of red and blue color while six bits
(64 levels) are used to control the brightness of green color. More number of levels for
brightness control are available for green color, as the human eyes are sensitive to
green.

3.1.2 RGB888 format
In the RGB888 format, every pixel uses four bytes (32 bits) in which the higher byte is not
used (dummy byte); see Fig 4.

.

Fig 4. Pixel data in memory of RGB888 format

3.1.3 Macros for colors
The combination of different brightness levels of the three colors give human eyes the
experience of different colors.

It is easier to use a macro instead of calculating 16-bit hexadecimal values for different
colors. The pseudo code with the macro implementation is as follows:
1 #if COLOR_FORMAT == RGB565
2 #define RGB(r,g,b) (((((uint8_t)b)>>3)<<0U) + ((((uint8_t)g)>>2)<<5U) +

((((uint8_t)r)>>3)<<11U))
3 #elif COLOR_FORMAT == RGB888
4 #define RGB(r,g,b) (((uint8_t)b)<<0UL) + (((uint8_t)b)<<8UL) +

(((uint8_t)r)<<16UL)
5 #endif

The composite color for RGB565 is shown in Fig 5. The shaded colors are the composite
color result of the R,G,B brightness level settings.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 6 of 33

.

Fig 5. Composite color for RGB565

The same color examples for RGB888 is shown in Fig 6.

.

Fig 6. Composite color for RGB888

The color data for the whole LCD panel is organized in a 2D array called as framebuffer;
see Section 3.4.

Though color format configurations are flexible, LCD panels usually take eight pins for
each color. Section 3.3.1 discusses about the unused least significant pins.

There is also a special palletized mode where colors in above format are saved in a
special palette RAM, and pixel colors are the indexes of the RAM. This mode is for early
256-color mode and the discussion is beyond the scope of this document.

3.1.4 LCD register to configure color format
The LCD controller has registers to determine pixel format; see Table 1.

Note: Register and its field is written in format “LCD_<register name>.[MSb:LSb](<field
name>)”. This application note describes the functions of register bit fields. Refer User
Manual for detailed information.

Table 1. LCD registers to configure color format
LCD_CTRL.[3:1] (LCDBPP) 5 = RGB888 (24 bpp), 6 = RGB565 (16 bpp), 7 = RGB444 (12

bpp)

LCD_CTRL.[5:5] (LCDTFT) 1 = TFT

LCD_CTRL.[8:8] (BGR) 0 = RGB, 1 = BGR

3.1.5 Code snippet for configuring color format
The code snippet to configure the color format for LCD is shown below. The code is based
on the SDK API. The complete code for LCD setup is discussed in Section 4 of the
application note. For example, the LCD panel used in LPCXpresso54608 board with the
part number is “RK043FN02H- CT”. According to the parameters given by the datasheet,
the following code snippet (clipped from main()) shows the necessary steps to setup
LCD display color format:

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 7 of 33

6 lcdc_config_t lcdConfig;
7 ...
8 lcdConfig.bpp = kLCDC_16BPP565; // Use RGB565 color format lcdConfig.display =

kLCDC_DisplayTFT; // Use TFT type of LCD lcdConfig.swapRedBlue = false; // Do not swap
red and blue (BGR)

9 ...

The code first initializes SDRAM that contain framebuffers, and then setup LCD controller
clock.

3.2 LCD pixel organization
An LCD panel is a 2D matrix of pixels. The row and column pixel count determines the
resolution of an LCD panel, expressed in column × row format. For example, if an LCD
panel has 240 rows (lines) and 320 columns, its resolution is 320 × 240. Popular
resolutions used in embedded systems are 320 × 240, 480 × 272, 640 × 480, 800 × 480,
and 800 × 600. The LCD controller in LPC MCUs support resolution up to 1024 × 768.
Example of an LCD panel with resolution 480 × 272 (480 columns, 272 rows) is shown in
Fig 7.

.

Fig 7. LCD pixel organization for a color TFT panel with 480 × 272 resolution

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 8 of 33

3.2.1 LCD register to configure LCD resolution
The LCD controller has the following registers to configure the resolution of an LCD.

Note: The register, field and field name are written in format <Register
name>.[MSb:LSb](<field name>). For example, REG1.[5:2](FieldName) means register
REG1, bit 5 to bit 2 (4 bits), and its name is FieldName.

Table 2. LCD registers to configure LCD resolution
LCD_TIMH.[7:2] (PPL) columns/16 -1, columns MUST be multiplied of 16

LCD_TIMV.[9:0] (LPP) Rows - 1

LCD_POL.[25:16] (CPL) Set to the number of columns – 1for TFT. i.e., same as (PPL + 1) *
16 - 1

3.2.2 Code snippet of configuring LCD resolution

The data sheet for the LCD panel used in LPCXpresso54608 board RK043FN02H-CT
specifies the LCD display resolution as 480 × 272.
10 #define LCD_PPL 480 // pixel per line
11 ...
12 #define LCD_LPP 272 // Line per panel
13 ...
14 // >>> configure LCD panel related parameters lcdConfig.ppl = LCD_PPL;
15 lcdConfig.lpp = LCD_LPP;
16 ...

The SDK API “LCDC_Init()” converts row and column numbers to register settings.

3.3 Signals to drive a bare LCD panel
Table 3 summarizes all the required signals (outputs) for driving a bare LCD panel.

Table 3. Signals to drive a bare LCD panel
Signal Description
LCD PWR LCD panel power enable

LCD_DCLK LCD panel clock

LCD_AC TFT data enable output

LCD_FP vertical synchronization pulse (TFT), starting a new LCD frame

LCD_LE line end signal

LCD_LP horizontal synchronization pulse (TFT), starting a new LCD line

LCD_VD[23:0] LCD panel data. Bits used depend on the panel configuration

Depending on the LCD technology, 10 to 31 pins are used to drive the LCD. The
LCD_DCLK is also known as the pixel clock. Configurations to connect TFT LCD panels
with typical color formats are shown in Table 4.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 9 of 33

Table 4. Configure to connect TFT LCD panels with typical color format
Pin name 12-bit, 4:4:4

mode
(18 pins)

16-bit, 1:5:5:5
mode
(22 pins)

16-bit, 1:5:5:5
mode
(24 pins)

24-bit (30 pins)

LCD_PWR Y Y Y Y

LCD_DCLK Y Y Y Y

LCD_ENAB_M Y Y Y Y

LCD_FP Y Y Y Y

LCD_LE Y Y Y Y

LCD_LP Y Y Y Y

LCD_VD[1:0] - - - RED[1:0]

LCD_VD[2] - - intensity RED[2]

LCD_VD[3] - RED[0] RED[0] RED[3]

LCD_VD[7:4] RED[3:0] RED[4:1] RED[4:1] RED[7:4]

LCD_VD[9:8] - - - GREEN[1:0]

LCD_VD[10] - GREEN[0] intensity GREEN[2]

LCD_VD[11] - GREEN[1] GREEN[0] GREEN[3]

LCD_VD[15:12] GREEN[3:0] GREEN[5:2] GREEN[4:1] GREEN[7:4]

LCD_VD[17:16] - - - BLUE[1:0]

LCD_VD[18] - - intensity BLUE[2]

LCD_VD[19] - BLUE[0] BLUE[0] BLUE[3]

LCD_VD[23:20] BLUE[3:0] BLUE[4:1] BLUE[3:0] BLUE[7:4]

3.3.1 Unused color pins on LCD panel
If the LCD panel has eight pins for every color, user should take care of the unused least
significant bits for color pins. For example, RGB565 has three unused pins for red
(LCD_VD[1:0] and LCD_VD[2]) , three unused pins for blue (LCD_VD[17:16] and
LCD_VD[18]) and two unused pins for green (LCD_VD[9:8]). The unused pins should not
be connected to the GND, LCD cannot reach its maximum brightness. An effective
method is to connect unused MSBs to used MSBs. For example, connect pin 7 to pin 1,
pin 6 to pin 0 for green color; see Fig 8. It provides full brightness to the LCD and
smoother color steps. Fig 8 summarizes the different cases.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 10 of 33

.

Fig 8. Connections of unused LCD pins (least significant pins)

The leftmost connection is frequently used for RGB565 format to connect to LCD panels
with 24-bit data lines.

Fig 9 shows the example of LCD connection on LPCXPresso5460x board. It uses a
simple connecting to ground method:

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 11 of 33

.

Fig 9. LCD connection on LPCXPresso54608 board

3.4 FrameBuffer (FB)
Every pixel data is saved in a separate memory known as the FrameBuffer (FB). The LCD
controller reads the framebuffer and sends the pixel data to LCD data lines. It refreshes
the LCD with FB data at a fixed frequency at about dozens of Frames Per Second (FPS).
Each time when the LCD pixels are refreshed, data from the Framebuffer (FB) is written
on the LCD_VD[] lines. As the data transfer rate (FPS) is usually greater than or equal to
30 FPS and the DMA of the LCD controller accesses the framebuffer memory frequently,
the temperature of the framebuffer memory rises significantly.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 12 of 33

Framebuffer uses a block of continuous memory larger than a typical on-chip SRAM for
most MCUs. For example, even for a very low resolution of 320 × 240 RGB565, the
framebuffer size is 320 × 240 × 2 = 150 kB. As it is difficult to have an on-chip SRAM of
such a size, an external SDRAM is used to store framebuffer(s) and other data of
graphical software. Later sections of the application note discuss techniques to connect
multiple FBs.

The sizes of FB for some common resolution and color settings are mentioned below:
• 320 × 240 @ 16 bpp: 150 kB
• 480 × 272 @ 16 bpp: 255 kB (uses a typical external SRAM chip)
• 640 × 480 @ 24 bpp: 1200 kB (24 bpp requires 32 bits per pixel to store)
• 1024 × 768 @ 16 bpp: 1536 kB

The LCD controller accesses FB as an array of four byte words. The words (pixel data)
are stored either in little- endian or big-endian format; see Table 5.

Table 5. Pixel organization in framebuffer
Byte order Little-endian bye,

16bpp
Big-endian, 16 bpp TGB888, either endian

0 pixel 0 pixel 1 Pixel 0

1

2 pixel 1 pixel 0

3 not used

Old STN panels with 1/2/4 bpp, has endian format settings within one byte. The
discussion is beyond the scope of this application note.

The LCD controller consists of a FIFO with a capacity of storing 16 words at a time. The
size of each word is 64 bits. LCD FIFO helps smoothing the data transfer from FB to
LCD. DMA only accesses FB when FIFO is drained below a programmable watermark
level. Also, the 64-bit width of FIFO limits the FB address to be aligned to eight bytes i.e.
the three Least Significant Bits (LSB) of FB address is always 0.

3.4.1 LCD registers to configure framebuffer
LCD controller supports up to two panels for STN, and one panel for TFT. The address of
FB for each panel are given by the registers shown below:

Table 6. LCD registers to configure framebuffer
LCD_LPBASE.[31:3] Address of FB for lower panel

LCD_UPBASE.[31:3] Address of FB for upper panel

For TFT, set both registers to the same value - - - only one active FB. Also note that since LSB
[2:0] is not considered, FB address must be multiples of 8.

LCD_CTRL.[7:7]
(LCDDUAL)

Always set to 0 for one TFT panel, does NOT support two TFT
panels

LCD_CTRL.[9:9] (BEBO) 0 = Little endian bytes within a 32-bit word, 1 = big endian bytes
within a 32-bit word

LCD_CTRL.[16:16]
(WATERMARK)

LCD DMA (TX) FIFO watermark, 0 = 4 or more empty locations, 1 =
8 or more empty locations

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 13 of 33

3.4.2 Code snippet of configuring framebuffer
Usually we use at least RGB565 color depth and put framebuffer in external SDRAM with
alignment to at least 8 bytes, and framebuffer is not required to initialize. We can define a
2D array with compiler extensions and corresponding linker configurations to guide tool
chain to put framebuffer in SDRAM w/o initializing it, or simply define a pointer of
framebuffer type and initialize it to the address we want to lay framebuffer at, and make
sure framebuffer range is not visible to linker.

The following snippet shows the 2D array approach (KEIL). The “s_FB[][]” is the instance
of framebuffer.
17 attribute ((section("FB"), zero_init)) uint16_t s_FB[IMG_HEIGHT][IMG_WIDTH];
18 ...
19 (in l inker scat ter f i le)
20 LR_Flash 0 512*1024 {
21 ...
22 RW_FB 0xA0000000 UNINIT 1024*1024 {
23 *(FB)
24 }
25 …
26 }

The code specifies that s_FB is in FB section and the linker scatter file specifies FB
section is placed in RW_FB region that starts at 0xA0000000, which is the base address
of the SDRAM range.

The following snippet shows the pointer approach (used in MCUXpresso IDE).
27 typedef uint16_t s_FB_t[IMG_WIDTH];
28 s_FB_t *s_FB = (s_FB_t*) 0xA0000000;

Note : s_FB is a 1D array of pointers and is initialized to 0xA0000000, (starting address
of the SDRAM range). The size of s_FB array is IMG_WIDTH and the format
s_FB[row][col] is used to address a pixel.

3.5 LCD timings
As discussed in Section 3.4, the LCD controller refreshes the LCD at a fixed Frame-Per-
Second (FPS) rate. Refreshing a new frame on the LCD is like printing a new page. If the
LCD refresh rate is slowed down by thousand times, the contents are seen like being
"printed" on a paper line by line with page margin settings shown in Fig 10.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 14 of 33

.

Fig 10. LCD timings

Fig 10 shows the parameters configured with the LCD controller timing registers and their
visualization on a real panel. Fig 10 is a landscape display format. The LCD controller
supports both landscape and portrait formats. For better understanding, assume that it is
a picture on a paper. The blank areas on the edges are the page margins. In LCD
terminology, these page margins are called porches. Horizontal porches are measured in
pixel clocks while vertical porches are measured in lines. Though there is no image data
in the porch regions, LCD pixel clock is still required.

VSYNC pulse starts a new frame, followed by some blank lines of Vertical Back Porch
(VBP). Then the valid data lines start. After refreshing all valid data lines, few more blank
lines of Vertical Front Porch (VFP) are present.

Every blank line and valid data line is started by a HSYNC pulse. It is followed by a blank
segment as Horizontal Back Porch (HBP), then a segment with length of pixels per line,
ended with another blank segment as Horizontal Front Porch (HFP). It is to be noted that
the back porch comes before the front porch.

Besides the porches, after one line is refreshed (after front porch stage), some panels
require a programmable "line end delay".

Many LCD panels accept a range of porch parameters, and can display images normally
even if some porch settings are out of specification, such as the LCD panel used by
LPCXpresso5460x board. But incorrect settings distort images for older panels. Fig 11

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 15 of 33

shows image on Truly G240320LTSW panel which wrongly sets vertical back porch to 8
while the correct value is 4, leading to 4 visible blank lines by LCD panel.

.

Fig 11. An example of incorrect porch settings

3.5.1 LCD registers to configure timings
Besides the clock/line settings, timing configuration also includes the polarity of HSYNC
and VSYNC pulses, output enable. Table 7 summarizes the configuration in LCD
controller of the above timing parameters.

Table 7. LCD registers to configure timings
LCD_TIMH.[15:8] (HSW) HSync pulse width, in pixel clocks – 1

LCD_TIMH.[23:16] (HFP) Horizontal front porch (after image data of one line), in pixel clocks -
1

LCD_TIMH.[31:24] (HBP) Horizontal back porch (before image data of one line), in pixel clocks
- 1

LCD_TIMV[.15:8] (VSW) VSync pulse width, in horizontal lines (rows) – 1

LCD_TIMV.[23:16] (VFP) Vertical front porch (after image data of one line), in rows - 1

LCD_TIMV.[31:24] (VBP) Vertical back porch (before image data of one line), in rows - 1

LCD_POL.[11:11] (IVS) VSync is active high = 0/low = 1

LCD_POL.[12:12] (HIS) HSync is active high = 0/low = 1

LCD_POL.[13:13] (IPC) Pixel clock active edge is rising = 0/falling = 1 (active edge drives
data to lines)

LCD_POL.[14:14] (IOE) Output enable (LCD_AC pin) is active high =0/low = 1

LCD_POL.[6:0] (LED) Line end delay, in pixel clicks - 1

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 16 of 33

3.5.2 Code snippets of configuring LCD timings

Relevant macros
29 #define LCD_HSW 2 // HSync width
30 #define LCD_HFP 8 // Horizontal front porch
31 #define LCD_HBP 43 // Horizontal back porch
32 #define LCD_VSW 10 // VSync width
33 #define LCD_VFP 4 // Vertical front porch
34 #define LCD_VBP 12 // Vertical back porch
35 #define LCD_POL_FLAGS kLCDC_InvertVsyncPolarity | kLCDC_InvertHsyncPolarity

Configuration code
36 ...
37 lcdc_config_t lcdConfig;
38 ...
39 lcdConfig.hsw = LCD_HSW; lcdConfig.hfp = LCD_HFP; lcdConfig.hbp = LCD_HBP;

lcdConfig.vsw = LCD_VSW; lcdConfig.vfp = LCD_VFP; lcdConfig.vbp = LCD_VBP;
40 lcdConfig.polarityFlags = LCD_POL_FLAGS;
41 ...

3.6 LCD power-up and power-down sequences
LCD panels require specific power-up and power-down sequences. The LCD controller
enables or disables itself and controls power to the LCD panel. The power-up sequence
consists of four steps:
1. When power is first applied, all LCD signals are held low
2. After power has stabilized, all signals except LCD_VD [23:0] and LCD_PWR are

active
3. After above signals are stabilized, contrast voltage is applied to panel
4. If required, a timer can be used to generate a delay and then let the LCD controller to

bring LCD_VD [23:0] and LCD_PWR active

Power-down sequence is symmetric with the power-up sequence. Fig 12 shows the
sequences.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 17 of 33

.

Fig 12. LCD power up and power down sequences

3.6.1 LCD registers for power sequence

Table 8. LCD registers for power sequence control
LCD_CTRL.[0:0] :
(LCDEN)

0 =disable LCD signals (held low); 1 =enable LCD signals

LCD_CTRL.[11:11]:
(LCDPWR)

0 = LCD panel is not powered and VD[23:0] are low; 1 = powered
and VD[23:0] operated normally

3.6.2 Code snippets to bring up LCD
SDK provides the APIs for necessary operation.
42 ...
43
44 LCDC_Start(LCD);
45
46 LCDC_PowerUp(LCD);

3.7 Flags and interrupts
LCD controller has status flags to represent its current working state and errors. These
flags can be programmed to trigger interrupts.

The flags are:

• FIFO underflow (bit 1): Set when either the upper or lower DMA FIFOs have been
read accessed when empty. Helpful to diagnose memory bandwidth issues; see
Section 4.2

• Framebuffer next address base update (bit 2): Used for multi-frame buffering.
This bit indicates that the next FB address has been loaded. Next FB will be used
for next LCD refresh cycle. Refer Section 4.1 for details about multi-frame buffering

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 18 of 33

• Vertical compare (bit 3): Set when specified progress of one LCD refresh cycle is
reached. The progress can be selected from start of either VSYNC/back
porch/active video/front porch

• AHB master bus error (bit 4): Set when LCD DMA encounters bus error response

3.7.1 LCD registers for status and interrupts
There are four registers that reflect raw flags, interrupt flags, interrupt mask, and interrupt
clear. All these registers have the same bit field organization for the four flags.

Table 9. LCD registers for status and interrupts
LCD_INTRAW Raw flags registers, show the instant value of the four status; can be

used to request interrupt

LCD_INTMSK Enable flag(s) in LCD_INTRAW to request interrupt, a one in a
control bit means IRQ enabled

LCD_INTSTAT Show the flags which are enabled to request interrupt after masking,
once set, it is sticky until cleared by software

LCD_INTCLR Write one(s) to clear corresponding sticky bits in LCD_INTSTAT

Flag bit organization is shown in Table 10.

Table 10. Flag bits organization in registers
LCD_INTXXX.[01:01] FIFO underflow

LCD_INTXXX.[01:02] Framebuffer next address base updated

LCD_INTXXX.[03:03] Vertical compare

LCD_INTXXX.[04:04] AHB master bus error

LCD_CTRL.[13:12]
(LCDVCOMP)

Select LCD refresh progress for vertical compare: 0 = VSync, 1 =
back porch, 2 =active video, 3 =front porch

The multi-framebuffering (discussed later) makes use of the framebuffer next address
update interrupt or vertical compare interrupt to synchronize buffer switch with LCD
refreshment.
…

47 LCDC_EnableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt);
NVIC_EnableIRQ(LCD_IRQn);

48 …
49 void LCD_IRQHandler(void)
50 {
51 uint32_t intStatus = LCDC_GetEnabledInterruptsPendingStatus(LCD);

LCDC_ClearInterruptsStatus(LCD, intStatus);
52 if (intStatus & kLCDC_BaseAddrUpdateInterrupt)
53 {
54 // notify background code that new framebuffer is loaded, can now draw on previous

framebuffer safely
55 }
56 }

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 19 of 33

3.8 Introduction to hardware cursor support
The LCD controller also has a hardware, two bits per pixel cursor overlay support,
including its bitmap, color palette, position, and clipping (display part of cursor image).
Details of the hardware cursor support is beyond the scope of this application note.

4. Advanced topics about LCD control

4.1 Multi-framebuffering technology
If one framebuffer is being refreshed by LCD controller and rendered by software at the
same time, LCD shows the intermediate render result. It often leads to a flickering effect.

To avoid this, dual-frame buffering is helpful. When one framebuffer is being refreshed -
printed to LCD panel, rendering is done on the other background framebuffer(s). With
this method, the framebuffer being refreshed by LCD controller should be “read only” for
software, so that the LCD panel never displays intermediate drawings.

To support multi-framebuffer technique, LCD controller has LCD_LPBASE and
LCD_UPBASE register (for TFT LCD always set them to the save value). It specifies the
address of NEXT framebuffer. Note that writing to this register does not affect LCD to
continue to refresh current FB.

4.1.1 Dual-framebuffering
A basic practice is to use dual-frame buffering where graphics software renders one FB
(background FB) while another FB (foreground FB) is refreshed to LCD panel. After the
background FB is fully rendered, the registers LCD_LPBASE and LCD_UPBASE are
updated to the address of this background FB, and switch the background FB to the
other FB.

Note that at this moment, the current foreground FB becomes the new background FB,
and it may still be used by LCD controller to refresh the LCD panel. If the graphics
software renders it immediately, it will compete the bus bandwidth against LCD controller
and the LCD may show tearing and/or flickers, which is unacceptable for a good user-
experience.

To avoid this issue, the LCD controller has the next base address update interrupt (bit 2
of LCD_INTSTAT register). The LCD next base address update interrupt asserts when
either the LCDUPBASE or LCDLPBASE values have been transferred to the
LCDUPCURR or LCDLPCURR incrementors respectively. The transfer happens at every
LCD VSYNC signal. Only after this IRQ, the new background FB (original foreground FB)
is safe to render. The side effect is wasting time on synchronizing to beginning of LCD
refreshment (VSYNC) which can lower frames-per-second (FPS) index.

4.1.2 Tri-framebuffering
Dual-framebuffering prevents flickering. However, S/W have to wait until foreground FB
is completed refreshed then do rendering, this lead to downgrade of frame-per-second
(FPS). Also, if system load changes in a large range, S/W do not have chance to do
more rendering work when system load is lite (no free background FB to render). As it

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 20 of 33

may not be possible to render new frame in time when system load is heavy, the FPS is
not stable.

Tri-frame buffering adopts the basic concept of dual-frame buffering and helps improving
the FPS index to be more stable. In this scheme, there are three FBs:
1. one foreground FB being refreshed by LCD controller
2. one background FB which is being rendered and
3. one background FB which is free or rendered. This FB ensures that if render rate is

lower LCD refresh rate, S/W can immediately render on it, instead of waiting until
current foreground FB is fully refreshed.

After initialization, software marks first FB as foreground FB and marks the remaining FBs
as free and then enters main loop. At the start point of main loop, the software searches
for free background FB:
• If there is one free background FB, use it for rendering. After rendering is completed,

immediately update the LCD_LPBASE and LCD_UPBASE to oldest rendered FB, so
LCD controller uses it for next LCD refresh cycle. Oldest FB maybe the just rendered
one or not. In the latter case, the update uses the same FB as previous update.

• If there is no free background FB, then skip rendering.

Then, the S/W waits for the flag set by next base address update ISR. After ISR signals
the IRQ flag, clear the flag and enter next iteration of main loop.

In parallel, in the IRQ handler of next base address update interrupt, if there is at least one
rendered background FB, mark the previous foreground FB as the new free background
FB. Also, signal the IRQ flag so that the background graphics software continues
rendering; otherwise, do nothing (especially, do not signal IRQ flag).

4.2 Avoid LCD tearing
If LCD resolution is high and refresh rate is high, or bus masters such as CPU and DMA
accesses the same RAM where framebuffer is located, they consume significant bus
bandwidth. If it exceeds the available bandwidth, LCD DMA may not be able to fill image
data to LCD in time. As a result, LCD display will look like as if the displayed image is
torn. It is called the LCD tearing effect; see Fig 13.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 21 of 33

.

Fig 13. An example of LCD tearing

In Fig 13, upper image is normal while the lower image is LCD tearing. We got the effect
by dividing EMC clock by nine or larger.

To detect potential LCD tearing, LCD controller provides the FIFO underflow interrupt (bit
1 of LCD_INTSTAT register) to monitor. If this IRQ happens often, then user should
consider some methods to decrease bus bandwidth or prioritize LCD DMA as below
approaches:
• Increase EMC bus clock
• Slow down the frame refresh rate, pixel clock if possible
• Some LPC MCUs (such as LPC17xx/40xx, LPC546xx) give option to configure AHB

master priorities. Setting LCD_DMA priority higher than others can relieve or solve
LCD tearing.

• However, this may cause FB rendering to slow down
• Use 32-bit SDRAM rather than 16-bit SDRAM

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 22 of 33

NXP provides an LCD resource requirements calculator in excel to estimate the risk of
LCD tearing. It supports framebuffer in external SRAM/SDRAM and TFT LCD. If the
parameters of external RAM and LCD are entered, the calculator estimates the
framebuffer size, LCD data rate, and bus bandwidth requirements. The file is available in
the package with this AN. An example of the LCD panel on LPC5460x board is calculated
as follows:

Table 11. LCD resource requirements calculator usage example
Bus bandwidth on various LCD resolutions and colors depths at various refresh rate

EMC bus clock (MHz) 96

Dynamic external memory configuration
Bus width 16

Precharge command period, tRP 3

RAS latency (active to read/write delay), RAS (tRCD) 3

CAS latency, CAS 3

LCD parameters
Horizontal (pixels) 480

Vertical (pixels) 272

Horizontal back porch (pixel clocks) 32

Horizontal back porch (pixel clocks) 8

Vertical front porch (lines) 12

Vertical back porch (lines) 4

Pixel clock rate (MHz) 9

Color depth (bpp) 16

Results
Refresh rate (Hz) 60.1

Frame buffet (KB) 255

LCD data rate (Mpixels/s) 7.8

LCD data rate (Mwords/s) 3.9

LCD data rate (Mbutsts/s) 1.0

Dynamic external memory burst – burst (clocks) 22

Bus bandwidth required (%) 22.5 %

Note: The refresh rate is calculated by REFRESH_RATE (Hz) = pixel_clock_rate / [(rows
+ vertical_front_porch + vertical_back_porch) * (pixel_clocks_per_data_line +
horizontal_front_porch + horizontal_back_porch))].

The above example shows on 96 MHz 16-bit slow SDRAM, an LCD with 480 × 272 × 16
bpp@9 MHz pixel clock requires about 22.5% bandwidth to refresh. An interesting thing
is if SDRAM is 32-bit, then bandwidth requirement is about 18.4%, far more than half.

The direct factor for LCD tearing risk is the bus bandwidth needed by LCD. Never make it
more than 100%. For a relatively safe system, better no more than 60%. If UI has rich
animations, it should be even lower.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 23 of 33

5. Example of configuring LCD controller and bring up LCD panel in SDK
SDK provides easy-to-use APIs to setup LCD controller and power up LCD.

To configure LCD controller, user should provide LCD panel parameters in a configure
structure and pass to LCDC_Init() function, then start LCD controller with LCDC_Start()
and finally power up LCD with LCDC_PowerUp.

As an example, for the LCD panel used in LPCXpresso54608 board, its part number is
“RK043FN02H-CT”, from its datasheet, we find below parameters, which are critical to
correctly configure LCD controller.

Table 12. An example of LCD timing parameters of LCD panel “RK043FN02H-CT”
Item Symbol Min. Typ Max. Unit
DCLK frequency Fclk 5 9 12 MHz
DCLK period Tclk 83 110 200 Ns
Hsync Period

time
Th 490 531 605 DCLK

Display
period

Thdisp 480 DCLK

Back
porch

Thbp 8 43 DCLK By H_BLANKING
setting

Front
porch

Thfp 2 8 DCLK

Pulse
width

Thw 1 DCLK

Vsync Period
time

Tv 275 288 355 H

Display
period

Tvdisp 272 H

Back
porch

Tvbp 2 12 H By V_BLANKING
setting

Front
porch

Tvfp 1 4 H

Pulse
width

Tvw 1 10 H

According to the parameters given in datasheet, we define the configuration values
relating to LCD panel as follows:
57 #define LCD_PANEL_CLK 12000000 // pixel clock
58 #define LCD_PPL 480 // pixel per line
59 #define LCD_HSW 2 // HSync width
60 #define LCD_HFP 8 // Horizontal front porch
61 #define LCD_HBP 43 // Horizontal back porch
62 #define LCD_LPP 272 // Line per panel
63 #define LCD_VSW 10 // VSync width
64 #define LCD_VFP 4 // Vertical front porch
65 #define LCD_VBP 12 // Vertical back porch
66 #define LCD_POL_FLAGS kLCDC_InvertVsyncPolarity | kLCDC_InvertHsyncPolarity

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 24 of 33

The following below code snippet (clipped from main()) shows the necessary steps to
bring up LCD.
67 lcdc_config_t lcdConfig;
68
69 BOARD_InitSDRAM(); // SDRAM contains framebuffer

CLOCK_AttachClk(kMCLK_to_LCD_CLK); // Attach main clock to LCD controller
CLOCK_SetClkDiv(kCLOCK_DivLcdClk, 1, true);

70 // >>> configure LCD controller and initialize
71 LCDC_GetDefaultConfig(&lcdConfig);
72 // >>> configure LCD panel related parameters
73 lcdConfig.panelClock_Hz = LCD_PANEL_CLK;
74 lcdConfig.ppl = LCD_PPL;
75 lcdConfig.hsw = LCD_HSW;
76 lcdConfig.hfp = LCD_HFP;
77 lcdConfig.hbp = LCD_HBP;
78 lcdConfig.lpp = LCD_LPP;
79 lcdConfig.vsw = LCD_VSW;
80 lcdConfig.vfp = LCD_VFP;
81 lcdConfig.vbp = LCD_VBP;
82 lcdConfig.polarityFlags = LCD_POL_FLAGS;
83 // <<<
84 lcdConfig.upperPanelAddr = (uint32_t)s_FBs[!s_actFBNdx][0]; // specify FB addr

lcdConfig.bpp = kLCDC_16BPP565; // Use RGB565 color format
85 lcdConfig.display = kLCDC_DisplayTFT; // Use TFT type of LCD
86 lcdConfig.swapRedBlue = false; // Do not swap red and blue (BGR)
87 LCDC_Init(LCD, &lcdConfig, LCD_INPUT_CLK_FREQ);
88 // <<<
89 // >>> Enable LCD “BaseAddrUpdateInterrupt” to safely switch FBs for dual-FB

LCDC_EnableInterrupts(LCD, kLCDC_BaseAddrUpdateInterrupt);
90 NVIC_EnableIRQ(LCD_IRQn);
91 // <<<
92 LCDC_Start(LCD);
93 LCDC_PowerUp(LCD);

The above code at first initializes SDRAM that will contain framebuffers. It then sets up
LCD controller clock, configures LCD controller, enables LCD controller IRQ for FB
switch, finally starts and powers up.

Note: For LCD controller configuration, some parameters come from LCD panel, while
others, such as framebuffer address, color format, depend on application design.

The above code snippet is collected from the LCD TFT dual-FB example
(lcdc_2_tft16bpp_2fb). The project of this example can be found in the companion
package. The hands-on PDF file shows more details about how to do this hands-on.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 25 of 33

6. Introduction to embedded GUIs

6.1 Why embedded GUI
Graphical LCD enabled applications often need a well-designed graphics user interface.
Most of the times, it is rather cumbersome as they need to implement many features
such as:
• Model LCD drivers and framebuffer management
• Basic graphics primitives such as drawing lines, polygons, circles, curves, and filling

shapes
• Drawing text: manage fonts, character encoding, text formatting, etc
• Drawing images
• Window and widget management for richer UI design and better user experience
• Mouse and/or touch screen support
• A set of PC utilities to create and manage resources of fonts, images, UI design, etc

Recently, smart phones and wearable devices have become popular. Their rich UI has
increased user-demand for UI experience for a vast range of embedded systems.

To address above common requirements, there are specialized graphics middleware to
use which is called as GUI. These middlewares take responsibilities of fundamental
graphical and window management and provide a rich set of PC utilities. Users can
design their UI with PC utilities and call APIs and callbacks to implement application level
UI logic, which saves lots of development time. Some frequently used GUIs suitable for
LPC MCUs are discussed below.

Free options: SWIM, emWin

Paid options: TouchGFX, Permission UI

6.2 Basic Graphics Library - SWIM
SWIM is a free basic graphic library from NXP. It supports simple graphic functions such
as boxes, lines, circles and some basic ASCII font options with 6 × 7, 6 × 13, and 8 × 8 as
well as bitmap images with scaling support.

The SWIM graphics library supports varying color depths but can only be statically
compiled for one color depth that must be defined before SWIM is compiled.

SWIM supports any frame buffer that has 8-bit, 16-bit, or 32-bit addressable pixel color
data.

NXP provides an application note AN10815 that illustrates how to configure SWIM for the
different third-party hardware available.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 26 of 33

.

Fig 14. Snapshot of “SWIM” library

6.3 emWin
emWin is an old but proven and reliable embedded GUI middleware from Segger. emWin
is hardware-friendly. It needs only few kB of flash and <= 1kB of RAM to run its core
function and supports almost all kinds of LCD panels/modules. For feature rich
applications, emWin also provides comprehensive GUI features including some modern
elements to make UI experience close to smart phones.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 27 of 33

.

Fig 15. Block diagram of emWin

Besides core GUI library functions, emWin supports a vast range of some advanced
features. Following are some of the features:

Memory devices: Memory device contexts allow creation of a section to output to the
display in the memory, ready to render to framebuffer(s) in the later, allowing flicker free
updates even with slow CPUs or slow displays.

Antialiasing: It is used for smoothening of lines and curves. It reduces the jagged, stair-
step appearance of any line that is not exactly horizontal or vertical. emWin supports
different antialiasing qualities, antialiased fonts and high-resolution coordinates.

.

Fig 16. Antialiasing examples in emWin

Windows and widgets: The window manager supplies a set of routines which allows
you to easily create, move, resize, and otherwise manipulate any number of windows. It
also provides low-level support by managing the layering of windows on the display and
by alerting your application to display changes that affect its windows. Based on window
support, emWin also provides predefined widgets as elements of a frame window, with

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 28 of 33

skinning support to improve user experience. On the other hand, emWin provides
templates of common dialogs such as file, calendar, color, and message box.

.

Fig 17. Widgets gallery of emWin

PC utilities: emWin provides a rich set of PC utilities, including bitmap converter,
simulator, text converter, font converter, GUI builder.

NXP® Semiconductors now offers emWin in library form for free commercial use with NXP
microcontrollers. The software bundle offered by NXP includes the emWin Color basic
package, the Window Manager/Widgets module including the GUI Builder, the Memory
Devices module for flicker-free animation, the Antialiasing module for smooth display of
curves, lines and fonts, the Font Converter and the VNC (Virtual Network Computing)
Server.

Segger provides a comprehensive user manual of emWin. NXP also provides application
notes on the usage of emWin:

AN11244: emWin startup guide

AN11218: emWin Porting guide

6.4 TouchGFX
TouchGFX is a relatively new GUI. User can create modern and beautiful UI like those
found on smart phones. TouchGFX is not free for commercial use.

TouchGFX is an excellent software framework that unlocks the graphical user interface
(GUI) performance of low-resource hardware. The revolutionizing technology breaks
existing restraints as it lets users create sophisticated GUIs that fully live up to smart
phone standards of today at a fraction of the cost. By using TouchGFX, embedded
product gets outstanding graphics and smooth animations with minimal resource and
power consumption. It is a high-end product with a low cost per unit and a long battery life.

TouchGFX provides a very powerful PC designer studio TouchGFX Designer. It is an
easy-to-use GUI builder that supports the development of embedded GUIs based on
TouchGFX

http://cache.nxp.com/documents/application_note/AN11244.pdf?fsrch=1&sr=1&pageNum=1
http://cache.nxp.com/documents/application_note/AN11218.pdf?fsrch=1&sr=1&pageNum=1

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 29 of 33

7. LCD hands-on examples
This application note includes four LCD hands-on examples. They all use
LPCXpresso54608 board (OM10392) and no special setting is required. To see the
result, just open the relative projects, build, download and run. To practice more, also
refer to the included hands-on guide "HOT_LCD_AN.pdf".

Example 1: Basic LCD drawing. This example uses 16 bpp mode. It also initializes
SDRAM and locates the single FB in SDRAM. It draws eight rotating color stripes on LCD
screen.

Example 2: Dual-framebuffering. Based on example 1 but allocates two FBs. Repeating
drawings in main loop: first clear the screen to black, then draw color stripes. Use SysTick
timer to limit draw rate.

If “SW5” button is not pressed, then use one FB to draw.

If “SW5” button is pressed, then waits for base address update IRQ, then draws on
backup FB (the previous active FB). After drawing, set the next active FB to this FB.

Example 3: Palette mode. This example uses on-chip RAM as FB and 2 bpp mode, one
byte contains four pixels. It defines used colors in palette. In main loop, it draws moving
rectangle periodically. Every period is synchronized to a new LCD base address update
IRQ. The example implements a rectangle draw and fill routine with 2 bpp mode.

Example 4: Hardware cursor. This example uses the same settings as example 3 and
configures hardware cursor. Then in main loop, moves cursor periodically. Every period is
synchronized to a new LCD vertical back porch IRQ. Users can see that there is a cursor
moving smoothly and when it reaches an edge (either left, top, right, bottom), the cursor
bounces. The inner color of cursor is the complementary to the background color.

http://www.nxp.com/products/developer-resources/software-development-tools/software-tools/lpcxpresso-boards/lpcxpresso-development-board-for-lpc5460x-mcus:OM13092http:/www.nxp.com/products/developer-resources/software-development-tools/software-tools/lpcxpresso-boards/lpcxpresso-development-board-for-lpc5460x-mcus:OM13092

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 30 of 33

8. Legal information

8.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

8.3 Licenses
Purchase of NXP <xxx> components

<License statement text>

8.4 Patents
Notice is herewith given that the subject device uses one or more of the
following patents and that each of these patents may have corresponding
patents in other jurisdictions.

<Patent ID> — owned by <Company name>

8.5 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 31 of 33

9. List of figures

Fig 1. LPC MCUs with on-chip LCD controller 3
Fig 2. Composite Colors ... 4
Fig 3. Pixel data in memory of RGB565 format 5
Fig 4. Pixel data in memory of RGB888 format 5
Fig 5. Composite color for RGB565 6
Fig 6. Composite color for RGB888 6
Fig 7. LCD pixel organization for a color TFT panel

with 480 × 272 resolution 7
Fig 8. Connections of unused LCD pins (least

significant pins) ... 10
Fig 9. LCD connection on LPCXPresso54608 board 11
Fig 10. LCD timings .. 14
Fig 11. An example of incorrect porch settings 15
Fig 12. LCD power up and power down sequences.... 17
Fig 13. An example of LCD tearing 21
Fig 14. Snapshot of “SWIM” library 26
Fig 15. Block diagram of emWin 27
Fig 16. Antialiasing examples in emWin 27
Fig 17. Widgets gallery of emWin 28

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

AN12027 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2017. All rights reserved.

Application note Rev. 1.0 — 21 August 2017 32 of 33

10. List of tables

Table 1. LCD registers to configure color format 6
Table 2. LCD registers to configure LCD resolution 8
Table 3. Signals to drive a bare LCD panel 8
Table 4. Configure to connect TFT LCD panels with

typical color format .. 9
Table 5. Pixel organization in framebuffer 12
Table 6. LCD registers to configure framebuffer 12
Table 7. LCD registers to configure timings 15
Table 8. LCD registers for power sequence control 17
Table 9. LCD registers for status and interrupts 18
Table 10. Flag bits organization in registers 18
Table 11. LCD resource requirements calculator usage

example .. 22
Table 12. An example of LCD timing parameters of LCD

panel “RK043FN02H-CT”................................ 23

NXP Semiconductors AN12027
 Connecting TFT LCD with LCD controller of LPC MCU

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2017. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 21 August 2017
Document identifier: AN12027

11. Contents

1. Introduction ... 3
2. LCD controller ... 3
2.1 Features ... 3
3. Driving TFT LCD .. 4
3.1 LCD color format .. 4
3.1.1 RGB565 format .. 4
3.1.2 RGB888 format .. 5
3.1.3 Macros for colors .. 5
3.1.4 LCD register to configure color format 6
3.1.5 Code snippet for configuring color format 6
3.2 LCD pixel organization 7
3.2.1 LCD register to configure LCD resolution 8
3.2.2 Code snippet of configuring LCD resolution 8
3.3 Signals to drive a bare LCD panel 8
3.3.1 Unused color pins on LCD panel 9
3.4 FrameBuffer (FB) ... 11
3.4.1 LCD registers to configure framebuffer 12
3.4.2 Code snippet of configuring framebuffer 13
3.5 LCD timings .. 13
3.5.1 LCD registers to configure timings 15
3.5.2 Code snippets of configuring LCD timings 16
3.6 LCD power-up and power-down sequences 16
3.6.1 LCD registers for power sequence 17
3.6.2 Code snippets to bring up LCD 17
3.7 Flags and interrupts .. 17
3.7.1 LCD registers for status and interrupts 18
3.8 Introduction to hardware cursor support 19
4. Advanced topics about LCD control 19
4.1 Multi-framebuffering technology 19
4.1.1 Dual-framebuffering ... 19
4.1.2 Tri-framebuffering ... 19
4.2 Avoid LCD tearing .. 20
5. Example of configuring LCD controller and

bring up LCD panel in SDK 23
6. Introduction to embedded GUIs 25
6.1 Why embedded GUI ... 25
6.2 Basic Graphics Library - SWIM 25
6.3 emWin .. 26
6.4 TouchGFX .. 28
7. LCD hands-on examples................................... 29
8. Legal information .. 30
8.1 Definitions .. 30
8.2 Disclaimers... 30
8.3 Licenses ... 30
8.4 Patents ... 30

8.5 Trademarks .. 30
9. List of figures ... 31
10. List of tables .. 32
11. Contents ... 33

	1. Introduction
	2. LCD controller
	2.1 Features

	3. Driving TFT LCD
	3.1 LCD color format
	3.1.1 RGB565 format
	3.1.2 RGB888 format
	3.1.3 Macros for colors
	3.1.4 LCD register to configure color format
	3.1.5 Code snippet for configuring color format

	3.2 LCD pixel organization
	3.2.1 LCD register to configure LCD resolution
	3.2.2 Code snippet of configuring LCD resolution

	3.3 Signals to drive a bare LCD panel
	3.3.1 Unused color pins on LCD panel

	3.4 FrameBuffer (FB)
	3.4.1 LCD registers to configure framebuffer
	3.4.2 Code snippet of configuring framebuffer

	3.5 LCD timings
	3.5.1 LCD registers to configure timings
	3.5.2 Code snippets of configuring LCD timings

	3.6 LCD power-up and power-down sequences
	3.6.1 LCD registers for power sequence
	3.6.2 Code snippets to bring up LCD

	3.7 Flags and interrupts
	3.7.1 LCD registers for status and interrupts

	3.8 Introduction to hardware cursor support

	4. Advanced topics about LCD control
	4.1 Multi-framebuffering technology
	4.1.1 Dual-framebuffering
	4.1.2 Tri-framebuffering

	4.2 Avoid LCD tearing

	5. Example of configuring LCD controller and bring up LCD panel in SDK
	6. Introduction to embedded GUIs
	6.1 Why embedded GUI
	6.2 Basic Graphics Library - SWIM
	6.3 emWin
	6.4 TouchGFX

	7. LCD hands-on examples
	8. Legal information
	8.1 Definitions
	8.2 Disclaimers
	8.3 Licenses
	8.4 Patents
	8.5 Trademarks

	9. List of figures
	10. List of tables
	11. Contents

