
IEC60730B_56800EX_Library_UG_v4_3
IEC60730B Library User's Guide

NXP Semiconductors Document identifier: IEC60730B56800EXL43UG
User's Guide

Contents
Chapter 1 Core self-test library.. 3

Chapter 2 Analog input/output test.. 6

Chapter 3 Clock test.. 11

Chapter 4 Digital input/output test..14

Chapter 5 Invariable memory test..22

Chapter 6 CPU program counter test.. 27

Chapter 7 Variable memory test.. 31

Chapter 8 CPU register test...39

Chapter 9 Stack test.. 47

Chapter 10 Watchdog test .. 50

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 2 / 53

Chapter 1
Core self-test library
The purpose of the core self-test library is to provide functions performing the MCU core self-test. The library consists of
independent functions performing tests compliant with international standards (IEC 60730, IEC 60335, UL 60730, UL 1998). The
library supports the CodeWarrior IDE. The NXP core self-test library performs the following tests:

• CPU registers test

• CPU program counter test

• Variable memory test

• Invariable memory test

• Stack test

• Clock test

• Digital input/output test

• Analog input/output test

• Watchdog test

The test architecture, implementation, test, and validation of the corresponding tests is comprehensively described in independent
sections for each test.

The library supports the 56F81xxx, 56F82xxx, 56F83xxx, 56F84xxx, and 56F80xxx DSC families based on the 56800EX core.

The core self-test library is disributed as an object code version. For the source code, contact an NXP representative.

1.1 Core self-test library – object-code version
The object-code version of the library consists of the precompiled binary file and the same list of header files as for the source-code
version of the library.

The following is the object file:

• CodeWarrior: IEC60730B_DSC_CW_v4_3.lib

1.2 Core self-test library – source-code version
The library name is IEC60730B_DSC_CW_v4_3. The main header files are iec60730b.h and iec60730b_core.h.

Each source file (*.c or *.S) has a correspond header *.h file.

Table 1. List of library items

File Name Test Type Function Name Functions
size [bytes]

Functions
duration [µs]

iec60730b.h Library header file - - -

iec60730b_core.h Core depend library
header file

- - -

iec60730b_dsc_aio.c Analog I/O test FS_AIO_InputInit_CYCLIC() 581 2.131

Analog I/O test FS_AIO_InputTrigger() 281 1.131

Analog I/O test FS_AIO_InputSet_CYCLIC() 1721 4.631

Table continues on the next page...

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 3 / 53

Table 1. List of library items (continued)

File Name Test Type Function Name Functions
size [bytes]

Functions
duration [µs]

Analog I/O test FS_AIO_InputCheck_CYCLIC() 2801 4.381

iec60730b_dsc_clock.c Clock test FS_CLK_QTIMER_Check() 861 2.881

iec60730b_dsc_dio.c Digital I/O test FS_DIO_Output() 2181 41.381

iec60730b_dsc_dio_ext.c Extended Digital I/O
test

FS_DIO_InputExt() 3721 11.251

Extended Digital I/O
test

FS_DIO_ShortToSupplySet() 2001 5.881

Extended Digital I/O
test

FS_DIO_ShortToAdjSet() 3141 8.751

iec60730b_dsc_flash.c Invariable memory
test (Flash)

FS_flash_HW16_program() 521 See the
function
dedicated
chapter

Invariable memory
test (Flash)

FS_flash_HW16_data() 521 See the
function
dedicated
chapter

Invariable memory
test (Flash)

FS_flash_SW16_program() 1281 See the
function
dedicated
chapter

Invariable memory
test (Flash)

FS_flash_SW16_data() 1281 See the
function
dedicated
chapter

iec60730b_dsc_pc.c Program Counter test FS_PC_Test() 361 See the
function
dedicated
chapter

Program Counter test FS_PC_subroutine() 141 -

iec60730b_dsc_pc_object1.c Program Counter test FS_PC_object_1() 61 -

iec60730b_dsc_pc_object2.c Program Counter test FS_PC_object_2() 61 -

iec60730b_dsc_ram.c Variable memory test
(RAM)

FS_RAM_AfterReset() 921 See the
function
dedicated
chapter

Variable memory test
(RAM)

FS_RAM_Runtime() 1181 See the
function
dedicated
chapter

Table continues on the next page...

Core self-test library – source-code version

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 4

Table 1. List of library items (continued)

File Name Test Type Function Name Functions
size [bytes]

Functions
duration [µs]

Variable memory test
(RAM)

FS_RAM_CopyMemory() 121 -

Variable memory test
(RAM)

FS_RAM_SegmentMarchC() 1121 -

Variable memory test
(RAM)

FS_RAM_SegmentMarchX() 881 -

iec60730b_dsc_reg.c Register test FS_CPU_DataRegisters() 4341 8.631

Register test FS_CPU_PointerRegisters() 1861 7.881

Register test FS_CPU_ShadowRegistersE() 2081 4.381

Register test FS_CPU_ShadowRegistersEX() 1941 4.251

Register test FS_CPU_StatusRegister() 1921 4.131

Register test FS_CPU_StackPointer() 521 1.631

Register test FS_CPU_LoopRegisters() 5581 12.371

iec60730b_dsc_Stack.c Stack test FS_StackInit() 181 1.881

Stack test FS_StackTest() 381 3.501

iec60730b_dsc_wdg.c Watchdog test FS_watchdog_setup() 521 See the
function
dedicated
chapter

Watchdog test FS_watchdog_check() 1641 4.501

1.2.1 Dedicated functions
This library is dedicated for the 56F8xxxx family. All functions mentioned in the table above are dedicated for the whole
supported family.

1.3 Functions performance measurement
This section contains remarks about the informative size and the approximate time of execution for the functions. The numbers
in the following list are used as remark links from the corresponding chapters:

1. The function parameter was measured in the CodeWarrior 11.1. IDE on MC56F83789 with the clock frequency of 50
MHz.

Functions performance measurement

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 5

Chapter 2
Analog input/output test
The analog IO test procedure performs a plausibility check of the digital IO interface of the processor. The analog IO test can be
performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return in the case of an analog IO error. Compare the return value
of the test function with the expected value. If it is equal to the FAIL return, then a jump into the safety error handling function must
occur. The safety error handling function may be specific to the application and it is not a part of the library. The main purpose of
this function is to put the application into a safety state.

The principle of the analog IO test is based on sequence execution, where a certain analog level is connected to a defined analog
input. The test function checks whether the converted value is within the tolerance. The test checks the analog input interface and
the defined number of reference values.

The block diagram for the analog IO test is shown in the following figure:

Figure 1. Block diagram for analog input test

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 6 / 53

2.1 Analog input/output test in compliance with IEC/UL standards
The performed overload test fulfils safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 2. Analog input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.2 – A/D
conversion)

Abnormal operation B/R.1 Plausibility check

2.2 Analog input/output test implementation
The test functions for the analog IO test are placed in the iec60730b_dsc_aio.c file. The functions are written in the C language.
The prototypes and definitions are in the iec60730b_dsc_aio.h file. The library common header file iec60730b.h must be included
in the project as well.

The following functions are called to test the analog input:

• FS_AIO_InputInit_CYCLIC ()

• FS_AIO_InputTrigger()

• FS_AIO_InputSet_CYCLIC()

• FS_AIO_InputCheck_CYCLIC()

The principle of the analog input test is based on a conversion of analog inputs with known voltage values and the test checks
whether the converted values fit into the limits defined by you. Normally, it should be about 10 % around the desired reference
values. The AIO test implementation is as follows:

/************define parameters**************/
#define CHANNELS_CNT 3
#define CHANNELS_INIT {4,5,7} /* Channels to scan*/
#define SAMPLES_INIT {0,1,1} /* SAMPLES from CLISTx registers */
/* VDD */
/* GND */
/* Internal Voltage Reference */
#define CHANNELS_LIMITS \
{\
 {3800, 4100},\
 { 0, 200},\
 { 900, 1200}\
}
static fs_aio_test_t aio_Str;
const fs_aio_limits_t adc_limits[CHANNELS_CNT] = CHANNELS_LIMITS;
const uint8_t ADC_inputs[CHANNELS_CNT] = CHANNELS_INIT;
const uint8_t ADC_samples[CHANNELS_CNT] = SAMPLES_INIT;
/**********initialization of hardware************/
PMC_EnableVoltageReferenceBuffer(PMC, true); /* enable bandgap reference */
/* Enable peripheral functionality on pin GPIOA4 (pin 12) */
GPIO_PinSetPeripheralMode(BOARD_ANA4_GPIO, BOARD_ANA4_PIN_MASK, kGPIO_ModePeripheral);
/* Enable peripheral functionality on pin GPIOA5 (pin 11) */
GPIO_PinSetPeripheralMode(BOARD_ANA5_GPIO, BOARD_ANA5_PIN_MASK, kGPIO_ModePeripheral);
ADC_Init(); /* initialisation of ADC module */
/**********initialization of test***************/
FS_AIO_InputInit_CYCLIC(&aio_Str, (fs_aio_limits_t*)adc_limits, (uint8_t *)ADC_inputs,

Analog input/output test in compliance with IEC/UL standards

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 7

(uint8_t*)ADC_samples, CHANNELS_CNT);
FS_AIO_InputTrigger(&aio_Str);
/***************test loop********************/
for (i=0;i<6;i++)
{
test_result = FS_AIO_InputCheck_CYCLIC(&aio_Str, (unsigned long *)
((FS_ADC_CYCLIC_Type*) 0xE500));
switch(test_result)
{
case FS_AIO_START:
FS_AIO_InputSet_CYCLIC(&aio_Str, (unsigned long *)((FS_ADC_CYCLIC_Type*) 0xE500));
CADC_DoSoftwareTriggerConverter(ADC, kCADC_ConverterA);
break;
case FS_AIO_FAIL:
safetyErrors |= AIO_TEST_ERROR;
SafetyErrorHandling();
FS_AIO_InputTrigger(&aio_Str);
break;
case FS_AIO_INIT:
FS_AIO_InputTrigger(&aio_Str);
break;
case FS_AIO_PASS:
FS_AIO_InputTrigger(&aio_Str);
break;
default:
break;
}
}

2.2.1 FS_AIO_InputTrigger()
This function sets up the analog input test to start the execution of the test.

Function prototype:

void FS_AIO_InputTrigger(fs_aio_test_t *pObj);

Function inputs:

pObj – The pointer to the analog test instance.

Function output:

Void. The function does not return a value.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.2 FS_AIO_InputInit_CYCLIC()
This function initializes one instance of the analog input test.

Function prototype:

void FS_AIO_InputInit_CYCLIC(fs_aio_test_t *pObj, fs_aio_limits_t *pLimits, uint8_t *pInputs, uint8_t *pSamples, uint8_t cntMax);

Function inputs:

pObj - The pointer to the analog test instance.

pLimits - The pointer to the array of limits used in the test.

Analog input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 8

pInputs - The pointer to the array of input numbers used in the test.

pSamples - The pointer to the array of sample numbers used in the test.

cntMax - The size of the input and the limits arrays.

Function output:

Void. The function does not return a value.

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.3 FS_AIO_InputSet_CYCLIC()
This function executes the first part of the AIO test sequence. This part sets up the ADC input channel. When the ADC converter
is configured for a software trigger, this function also triggers the conversion. This function can be called when the ADC module
is idle and ready for the next conversion.

Function prototype:

FS_RESULT FS_AIO_InputSet_CYCLIC(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

pObj - The pointer to the analog test instance.

pAdc - The pointer to the base address of the ADC module.

Function output:

This function returns a value of the unsigned long data type. It can have the following values:

• FS_AIO_PASS (0x00000000)

• FS_AIO_FAIL (0x00000701)

• FS_AIO_PROGRESS (0x00000702)

• FS_AIO_INIT (0x00000704)

Function performance:

The information about the function performance is in Core self-test library – source code version.

2.2.4 FS_AIO_InputCheck_CYCLIC()
This function executes the second part of the AIO test sequence. This part reads the converted analog value and checks if the
value fits into the predefined limits. The test is finished, when this function reports FS_AIO_PASS or FS_AIO_FAIL.

Function prototype:

FS_RESULT FS_AIO_InputCheck_CYCLIC(fs_aio_test_t *pObj, uint32_t *pAdc);

Function inputs:

pObj - The pointer to the analog test instance.

pAdc - The pointer to the base address of the ADC module.

Function output:

The function returns a value of the unsigned long data type. It can have the following values:

• FS_AIO_PASS (0x00000000)

• FS_AIO_FAIL (0x00000701)

• FS_AIO_PROGRESS (0x00000702)

Analog input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 9

• FS_AIO_START (0x00000703)

• FS_AIO_INIT(0x00000704)

Function performance:

The information about the function performance is in Core self-test library – source code version.

Analog input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 10

Chapter 3
Clock test
The clock test tests the clock frequency of the processor for a wrong frequency fault. The clock test is performed during
application runtime.

The identification of a safety error is ensured by the specific FAIL return in case of a clock fault. Assess the return value of the
test function and if it is equal to the FAIL return, then a jump into the safety error handling function should occur. The safety error
handling function may be specific to the application and it is not a part of the library. The main purpose of this function is to put
the application into a safety state.

The clock test is based on a comparison of two independent clock sources. If the test routine detects a change in the frequency
ratio between the clock sources, a fail error code is returned. The test routine uses the QTIMER which is fed by two independent
clocks. The primary clock drives the counter. The secondary clock triggers a capture window on every rising edge of the signal.
The capture window stores the current value of counter into the timer channel capture register and reloads the counter. The value
in the capture register is then compared to the expected pre-calculated limit values by the check function. The check function is
called periodically, at an appropriate time within an application. Its calling can be asynchronous to the QTIMER capture window.

The block diagram of test is shown in the following figure:

Figure 2. Block diagram for clock test

3.1 Clock test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the EC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 3. Clock test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Clock test 3.Clock Wrong frequency B / R.1 Frequency monitoring

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 11 / 53

3.2 Clock test implementation
The test functions for the clock test are placed in the iec60730b_dsc_clock.c file and written as C functions. The header file with
the function prototypes is iec60730b_dsc_clock.h. The common library header files are iec60730b.h and iec60730b_core.h.

The safety library contains only one function to test the clock:

• FS_CLK_QTIMER_Check()

The other steps that are required for the clock test must be done within the application code.

Configure the QTIMER, choose an appropriate periodical event, and calculate the limit values. A structure of the "fs_clock_test_t"
type must be defined. The type is defined in the iec60730b_dsc_clock.h file.

The following features must be set in the QTIMER:

• One of the independent clocks (the primary clock) goes to the counter.

• The second clock triggers the capture window. This window stores the value from the counter and reloads it.

The other settings can be customized to fit the respective application.

In the example code shown below, the following approach is used:

The PIT1 timer is clocked by a 8-MHz fast internal oscillator (divided by 512) and the roll-over time is set to 200 ms. The PIT1 output
is routed to the QTIMER secondary input via the XBAR module. In the roll-over time period, the SYNC_OUT signal triggers the
capture window. At this moment, the counter value is stored to the capture register and the counter reloads. The primary source
of the QTIMER is the 25-MHz IPB clock (divided by 64).

The example of the test implementation is as follows:

#define QTIMER_PRIMARY_CLK 25000000U /*Frequency in Hz*/
#define PIT1_CLOCK FAST_IRC_CLOCK
#define QTIMER_SECONDARY_CLK PIT1_CLOCK
#define CLOCK_TEST_TOLERANCE 20 /* % */
XBARA_Init(XBARA);
XBARA_SetSignalsConnection(XBARA,kXBARA_InputPit1SyncOut,kXBARA_OutputTa0In);
SIM_SetInternalPeriInput(SIM, kSIM_TMRA0InputIndex, kSIM_TMRA0Input_XB_OUT38);
TMRA0_initialization();
PIT1_initialization(3052U, kPIT_PrescalerDivBy512);
SafetyClockTestInit(&g_sSafetyCommon, &g_sSafetyClockTest);
while(1)
{
.
.
CLOCK_test_result = FS_CLK_QTIMER_Check(g_sClock);
if (CLOCK_test_result == FS_CLK_FAIL)
{
safetyErrors |= CLOCK_TEST_ERROR;
SafetyErrorHandling(g_sSafetyCommon);
}
.
.
}

3.2.1 FS_CLK_QTIMER_Check()
This function handles the clock test. It evaluates the captured value in the "TMRx_CAPTn" register with pre-calculated limits. Until
the first capture, the function returns "FS_CLK_PROGRESS".

Function prototype:

Clock test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 12

FS_RESULT FS_CLK_QTIMER_Check(fs_clock_test_t *pClockTest);

Function inputs:

pClockTest - The pointer to the structure of an "fs_clock_test: type, defined in the test header file.

Function output:

This function returns the value of the unsigned long data type. It can have the following values:

• FS_CLK_PASS (0x000)

• FS_CLK_FAIL (0x601)

• FS_CLK_PROGRESS (0x602)

Function performance:

The information about the function performance is in Core self-test library – source code version.

Clock test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 13

Chapter 4
Digital input/output test
The Digital Input/Output (DIO) test procedure performs a plausibility check of the digital IO interface of the processor.

The identification of the safety error is ensured by the specific FAIL return in case of the DIO error. Assess the return value of
the test function and if it is equal to the FAIL return, a move into the safety error handling function should occur. The safety error
handling function may be specific to the application and it is not a part of the library. The main purpose of this function is to put
the application into a safe state.

The DIO test functions check the digital input and digital output functionality and the short circuit conditions between the tested
pin and the supply voltage, GND, or optional adjacent pin. The execution of DIO tests must be adapted to the final application.
Pay attention to the hardware connections and design. Be sure which functions can be applied to a respective pin. In most cases,
the tested (and sometimes also auxiliary) pin must be reconfigured while the application runs. When performing the digital output
test, ensure that there is enough time between the test arrangement and the reading of a result.

4.1 Digital input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 4. Digital input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.1 – Digital
I/O)

Abnormal operation B/R.1 Plausibility check

4.2 Digital input/output test implementation
Test functions for the digital IO test are placed in the iec60730b_dsc_dio.c and iec60730b_dsc_dio_ext.c files. The header files
with the function prototypes are iec60730b_dsc_dio.h and iec60730b_dsc_dio_ext.h. The iec60730b.h and iec60730b_core.h are
the common header files that must be included in the project as well.

The digital input/output tests can be executed using the following functions:

• FS_DIO_Output()

• FS_DIO_InputExt()

• FS_DIO_ShortToSupplySet()

• FS_DIO_ShortToAdjSet()

The pointer to the variable of an fs_dio_test_t structure type is a parameter of each function. The structure is defined in the
iec60730b_dio.h file.

typedef struct

{

uint16_t PUR; /* GPIO Pull Resistor Enable Register */

uint16_t PUS; /* GPIO Pull Resistor Type Select */

uint16_t DDR; /* GPIO Data Direction Register */

uint16_t DR; /* GPIO Data Register */

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 14 / 53

} fs_dio_backup_t;

/* Safety DIO test item */

typedef struct

{

uint16_t gpio; /* Pointer to GPIO module */

uint8_t pinNum;

uint8_t pinDir;

uint8_t pinMux;

fs_dio_backup_t sTestedPinBackup;

} fs_dio_test_t;

This variable/variables must be initialized before the call of a test function. Example of initialization and test execution is
shown below.

fs_dio_test_t test_item_0 = /* P1_14 */

{

/*.gpio =*/ FGPIOG_BASE, /* Pointer to GPIO module */

/*.pinNum =*/ 1, /* Pin Number */

/*.pinDir =*/ 0, /* In or Out 0 and 1*/

/*.pinMux =*/ 0, /* */

};

fs_dio_test_t test_item_1 = /* P1_20 */

{

/*.gpio = */FGPIOG_BASE, /* Pointer to GPIO module */

/*.pinNum =*/ 2,

/*.pinDir =*/ 0,

/*.pinMux =*/ 1,

};

/* NULL terminated array of pointers to dio_test_t items for safety DIO test */

fs_dio_test_t *test_items[3]={ &test_item_0, &test_item_1, NULL };

4.2.1 FS_DIO_Output()
This function tests the digital output functionality of the pin. The principle of the test is to set up and read both logical values on the
tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough for the device to reach the desired
logical value on the pin. A very low delay parameter causes the fail return value of the function.

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 15

Figure 3. Block diagram for digital output test

Function prototype:

FS_RESULT FS_DIO_Output(fs_dio_test_t *pTestedPin, uint16_t delay);

Function inputs:

pTestedPin – The pointer to a variable of the "fs_dio_test_t" type. It specifies the tested pin. See Digital input/output
test implementation.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

The function returns a value of the unsigned short data type and has either of the following values:

• FS_DIO_FAIL (0x00000801)

• FS_DIO_PASS (0)

Example of function call:

PortInit((GPIO_Type*)test_item_0.gpio, PIN_DIRECTION_OUT, test_item_0.pinNum, PIN_PULL_UP);

DIO_out_result = (&test_item_0, 50);

Function performance:

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 16

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the digital output. An appropriate delay must be defined for proper functionality.

4.2.2 FS_DIO_ShortToAdjSet()
This function ensures the required conditions for the short-to-adjacent-pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The tested pin must be configured as a GPIO input pin and the adjacent pin must be configured as a GPIO output pin. The function
block diagram is shown in the following figure. Similarly to the short-to-supply test, this test requires the use of two functions. The
second (get) function evaluates the test result. The "FS_DIO_InputExt()" function is described in the respective chapter. Specify
the tested pin and the adjacent pin for the input test function.

Figure 4. Block diagram of "FS_DIO_ShortToAdjSet()" function

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

pTestedPin - The pointer to a variable of the "fs_dio_test_t" type. It specifies the tested pin.

pAdjPin - The pointer to a variable of the "fs_dio_test_t" type. It specifies the adjacent pin.

testedPinValue - The value that is set on the tested pin (logical 0 or logical 1).

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 17

Function output:

The function returns a value of the unsigned long data type and it has either of the following values:

• FS_DIO_FAIL (0x00000801)

• FS_DIO_PASS (0)

Example of function call:

The following is the code example of the short-to-adjacent-pin test.

PortInit((GPIO_Type*)test_item_0.gpio, PIN_DIRECTION_IN, test_item_0.pinNum,
PIN_PULL_UP);
PortInit((GPIO_Type*)test_item_1.gpio, PIN_DIRECTION_OUT, test_item_1.pinNum,
PIN_PULL_UP);

dioShortSetResult = FS_DIO_ShortToAdjSet(&test_item_0, &test_item_1, LOGICAL_ONE,
BACKUP_EN);

/* if needed, place some delay between the two functions */

dioInputResult = FS_DIO_InputExt(&test_item_0, &test_item_1, LOGICAL_ONE, BACKUP_EN);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the GPIO input and the adjacent pin must be configurted as the GPIO output before calling
the function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions
(tested pin as input, adjacent pin as output). After the end of the function, the application cannot manipulate neither the tested nor
the adjacent pin, until the "FS_DIO_InputExt" function is called for these pins.

4.2.3 FS_DIO_ShortToSupplySet()
This function is the first part of the short-to-supply test. It can be used for short circuit testing between the tested pin and the
hardware supply voltage (VCC, VDD) or between the tested pin and hardware ground (GND). Its block diagram is shown in the
following figure. The second part of the test (result evaluation) is ensured by the FS_InputExt() function which is described in
the respective section. The tested pin must be configured as a GPIO input pin. The main purpose of the FS_ShortToSupplySet()
function is to set the pull-up or pull-down resistor connection on the tested pin. It also ensures the test whether the pin is correctly
configured and makes a backup of its settings (if needed).

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 18

Figure 5. Block diagram of FS_DIO_ShortToSupplySet function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet(fs_dio_test_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

pTestedPin - The pointer to a variable of the fs_dio_test_t type. It specifies the tested pin.

shortToVoltage - This specifies whether the pin is tested for the short against GND or VDD. For GND, enter 1 or non-zero. For
VDD, enter 0.

BackupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

The function returns a value of the unsigned long data type and has either of the following values:

• FS_DIO_FAIL (0x00000801)

• FS_DIO_PASS (0)

Example of function call:

The following is the code example of the short-to-GND test. The implementation difference between the short-to-GND and
short-to-VDD tests is only in one parameter. For the short-to-GND test, the parameter must have a non-zero value and the other
way round.

PortInit((GPIO_Type*)test_item_0.gpio, PIN_DIRECTION_IN, test_item_0.pinNum, PIN_PULL_UP);

dioShortSetResult = FS_DIO_ShortToSupplySet(&test_item_0, 1, BACKUP_ENABLE);

/* if needed, place some delay between the two functions */

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 19

dioInputResult = FS_DIO_InputExt(&test_item_0, &test_item_0, 1, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the GPIO input before calling the function. If the backup functionality is enabled, the function
sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application cannot
manipulate the tested pin until the FS_DIO_InputExt function is called for the tested pin.

4.2.4 FS_DIO_InputExt()
This function a get function for the "short-to" tests, but it can be also used independently (standalone) as a test of an input pin
with a known value. The function is applied to the pin that is already configured as the GPIO input and you know what logical level
is expected at the time of the test. The logical level can either result from the actual configuration in the application or it can be
initialized for the test (if possible). The block diagram is shown in the following figure. If the function is used as a standalone test,
the pAdjPin parameter has no effect. Entering the same inputs as for the tested pin is recommended.

Figure 6. Extended digital input test

Function prototype:

FS_RESULT FS_DIO_InputExt(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue, bool_t backupEnable);

Function inputs:

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 20

pTestedPin - The pointer to a variable of the fs_dio_test_t type. It specifies the tested pin.

pAdjPin - The pointer to a variable of the fs_dio_test_t type. It specifies the adjacent pin.

testedPinValue - The expected value of the tested input pin (0 or 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enabled.

Function output:

The function return signalizes the result of the test. It can have these values:

• FS_DIO_FAIL (0x00000801)

• FS_DIO_PASS (0)

Example of function call:

See the short-to-supply or short-to-adjacent-pin examples.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function cannot be used on the MKE0x devices. The tested pin must be configured as the GPIO input before the function call.
Even if no adjacent pin is involved in the test, the AdjacentPin parameter must be specified. It is recommended is to enter the same
input as for the TestedPin parameter.

Digital input/output test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 21

Chapter 5
Invariable memory test
The invariable memory on the MC56F83xxx DSCs is the on-chip flash. The principle of the invariable memory test is to check
whether there is a change in the memory content during the application run. Several checksum methods can be used for this
purpose. The checksum is an algorithm that calculates a signature of the data in the tested memory. The signature of this memory
block is then periodically calculated and compared with the original signature.

The signature for the assigned memory is calculated in the linking phase of an application. The signature must be saved in the
invariable memory, but in a different area than that the checksum is calculated for. In the runtime and after reset, the same
algorithm must be implemented in the application to calculate the checksum. The results are compared. If they are not equal, a
safety error state occurs.

The algorithm that calculates the checksum parameter (signature) is set as the 16-bit CRC polynomial (0x1021) to generate a CRC
code for error detection.

The DSCs feature a hardware CRC engine which provides an easy method of calculating the CRC of multiple bytes/words written
to it. Using hardware for the invariable memory test has better performance levels. The software version of the test can be used
as an alternative when the CRC hardware module is not used for any reasons.

5.1 Invariable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 5. Invariable memory test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Invariable memory 4.1 – Invariable
memory

All single bit faults B/R.1 Periodic modified
checksum

5.2 Invariable memory test implementation
The test functions are placed in the iec60730b_dsc_flash.c file. The functions are written in the assembly language. The
prototypes and definitions are in the iec60730b_dsc_flash.h file. The library common header files are iec60730b.h and
iec60730b_core.h. These files must be included in the project as well. There are four functions with identical functionality in the
iec60730b_dsc_flash.c file:

• FS_flash_HW16_program()

• FS_flash_HW16_data()

• FS_flash_SW16_program()

• FS_flash_SW16_data()

The functions with “HW” in their names use the hardware CRC module. Be sure that the clock is enabled for the HW CRC module
when using the HW test functions. The functions marked as "SW" do calculations without the hardware module. Use the functions
with the “program” suffix when checking the program memory. Use the functions with the “data” suffix to check the data memory.

5.2.1 Computing of CRC value in linking phase of application
In the final application, the checksum of a given memory block must be calculated before it is written into the flash memory. The
rule is that the calculated checksum is stored at a known address in flash which is apart from the tested block.

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 22 / 53

5.2.2 Test performed once after MCU reset
When implemented after the reset or when there is no restriction on the execution time, the function call can be as follows:

#include "iec60730b.h"

extern UInt16 _checksum;

FLASH_test_result = FS_flash_HW16_program((UInt16 *) startAddress, (UInt16)size, (UInt16
*)CRC_BASE, (UInt16)startSeed);

if(_checksum != FLASH_test_result) SafetyError();

Where:

• start_address - The initial address of the memory block to be tested.

• size - The size of the memory block to be tested (first address – end address + 1).

• CRC_BASE - The base address of the CRC module.

• startSeed - The start condition seed (usually 0xFFFF).

5.2.3 Runtime test
In application runtime and with limited time for execution, the CRC is computed in a sequence. It means that the input parameters
have different meaning when called after the reset. The start address is replaced with the actual address as the first parameter
in the after-reset case. The implementation can be as follows:

psFlashCrc->partCrc = FS_flash_HW16_program((UInt16*)psFlashCrc->actualAddress,
(UInt16)psFlashConfig->blockSize, (UInt16*)CRC_BASE, (UInt16)psFlashCrc->partCrc);

if(FS_FLASH_FAIL == SafetyFlashTestHandling(psFlashCrc, psFlashConfig))

{ psSafetyCommon->safetyErrors |= FLASH_TEST_ERROR; SafetyErrorHandling(psSafetyCommon); }

Where:

• psFlashCrc->partCrc - The particular CRC result and the seed parameter for the next iteration.

• psFlashCrc->actualAddress - The actual address of the memory block to be tested.

• CRC_BASE - The base address of the CRC module.

• psFlashConfig->blockSize - The size of the memory block to be tested.

• psFlashCrc->partCrc - The CRC value computed in the previous call.

Carry out the handling of the function. When the checksum of a block is calculated in more iterations, the result from the first
iteration (function call) is the seed value for the next function call. After the last part of memory is processed with the test function,
the result is the final checksum of the whole tested memory block.

5.2.4 FS_flash_HW16_data()
This function calculates the 16-bit CRC polynomial (0x1021) of the data stored in the data memory using the CRC module.

Function prototype:

unsigned short FS_flash_HW16_data(unsigned long *startAddress, unsigned long size, unsigned long *moduleAddress,
unsigned short crcVal);

Function inputs:

Invariable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 23

*startAddress - The pointer to the first address of the memory block to be tested.

size - The size of the block to be tested.

*moduleAddress - The base address of the CRC module.

crcVal - The input seed value for calculation (for the first iteration it is 0; for the next iterations it is the result from the previous
function call).

Function output:

unnt16_t - The checksum of the block of memory defined by the input parameters.

Function performance:

The function size is 52 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Table 6. Duration of FS_flash_HW16_data() in dependence of tested block size

Block size (bytes) Execution time (approximately)

0x20 6.88 µs

0x40 11.75 µs

0xA0 27.00 µs

Calling restrictions:

The hardware CRC module must be enabled and turned on before the function call. The function cannot be interrupted by a
function that changes the content or setup of the hardware CRC module. The addressed memory always stands for the data
memory space.

5.2.5 FS_flash_HW16_program()
This function calculates a 16-bit CRC polynomial (0x1021) of the data stored in the program memory using the CRC module.

Function prototype:

unsigned short FS_flash_HW16_program(unsigned long *startAddress, unsigned long size, unsigned long *moduleAddress,
unsigned short crcVal);

Function inputs:

*startAddress - The pointer to the first address of memory block to be tested.

size - The size of the block to be tested.

*moduleAddress - The base address of the CRC module.

crcVal - The input seed value for the calculation (for the first iteration it is 0; for the next iterations it is the result from the previous
function call).

Function output:

The checksum of the block of memory defined by the input parameters.

Function performance:

The function size is 52 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Invariable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 24

Table 7. Duration of "FS_flash_HW16_program()" in dependence of tested block size

Block size (bytes) Execution time (approximately)

0x20 8.50 µs

0x40 14.38 µs

0xA0 34.00 µs

Calling restrictions:

The hardware CRC module must be enabled and turned on before the function call. The function cannot be interrupted by a
function that changes the content or setup of the hardware CRC module. The addressed memory always stands for the program
memory space.

5.2.6 FS_flash_SW16_data()
This function calculates a 16-bit CRC polynomial (0x1021) of the data stored in the data memory without the CRC module.

Function prototype:

unsigned short FS_flash_SW16_data(unsigned long *startAddress, unsigned long size, unsigned long *moduleAddress, unsigned
short crcVal);

Function inputs:

*startAddress - The pointer to the first address of the memory block to be tested.

size - The size of the block to be tested.

*moduleAddress - The base address of the CRC module. This parameter has no impact.

crcVal - The input seed value for the calculation (for the first iteration it is 0; for the next iterations it is the result from the previous
function call).

Function output:

uint16_t - The checksum of the block of memory defined by the input parameters.

Function performance:

The function size is 128 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Table 8. Duration of "FS_flash_SW16_data()" in dependence of tested block size

Block size (bytes) Execution time (approximately)

0x20 115.80 µs

0x40 198.00 µs

0xA0 538.00 µs

Calling restrictions:

The addressed memory always stands for the data memory space.

5.2.7 FS_flash_SW16_program()
This function calculates the 16-bit CRC polynomial (0x1021) using the CRC module.

Function prototype:

Invariable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 25

unsigned short FS_flash_SW16_program(unsigned long *startAddress, unsigned long size, unsigned long *moduleAddress,
unsigned short crcVal);

Function inputs:

*startAddress - The pointer to the first address of the memory block to be tested.

size - The size of the block to be tested.

*moduleAddress - The base address of the CRC module. This parameter has no impact.

crcVal - The input seed value for the calculation (for the first iteration it is 0; for the next iterations it is the result from the previous
function call).

Function output:

unnt16_t - The checksum of the block of memory defined by the input parameters.

Function performance:

The function size is 128 B.1

The function duration depends on the defined block size. Several examples are shown in the following table:1

Table 9. Duration of "FS_flash_SW16_program()" in dependence of tested block size

Block size (bytes) Execution time (approximately)

0x20 120.10 µs

0x40 239.00 µs

0xA0 588.60 µs

Calling restrictions:

The addressed memory always stands for the program memory space.

Invariable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 26

Chapter 6
CPU program counter test
This test tests the functionality of the program counter register. This test is targeted for the "stuck-at" fault condition. The test can
be performed once after the MCU reset and also during runtime.

Each value written to the program counter register is supposed to be an address at which the processor tries to jump immediately.
Therefore, pay much attention to the test patterns that are used to test the program counter.

The principle of the test implemented on DSCs is as follows.

The test consists of four functions. The first function is a handling function. One of the two independent “object functions” and
another subroutine function are called from it. At the beginning of the handling function is a flag, which is addressed when an input
parameter is set. After successful execution of the test, this flag is cleared.

There are two independent functions, each of them appears in a separate source file (a separately linkable object). That is the key
principle of the whole test. Place both object functions in appropriate and possible addresses in the program memory. By default,
this setup is done in the linker. These addresses are test patterns and should test as much of the program counter as possible.

It is expected that a complete iteration of the test consists of two handling function executions. Both object functions are used as
parameters of the handling function.

The advantage of the previously mentioned flag is that it can be useful in the case of a program counter test failure and a
subsequent diagnostic. If the failure of the program counter register is a "stuck-at" failure of one bit, everything depends on the
position of that bit in the register. If the bit is a part of the address used before the test itself, the application is damaged. Otherwise,
if the stuck bit is detected in the test, the test itself is unable to proceed all the jumps and returns. Application would be probably
damaged as well, but the flag would be set and it would prove the program counter register failure in the post-process diagnostic.

The following is the block diagram of the test principle:

Figure 7. Block diagram of FS_DSC_PC_Test

6.1 CPU program counter test in compliance with IEC/UL
standards

The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 27 / 53

Table 10. CPU program counter test in compliance with the IEC/UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU CPU (1.3 – Programme
Counter)

Stuck at B/R.1 Periodic self test

6.2 CPU program counter test implementation
The main handling function and the subroutine are placed in the iec60730b_dsc_pc.c file. The separate object functions are in the
iec60730b_dsc_pc_object1.c or iec60730b_dsc_pc_object2.c files, respectively. All these functions are written in the assembler
language. The function prototypes and definitions are in the iec60730b_dsc_pc.h file. The library common header files are
iec60730b.h and iec60730b_core.h. These files must be included in the project as well. The correct implementation of the program
counter test is as follows.

In the linker command file (*.cmd), specify the placement of the program counter test objects.

SECTIONS

{

PC_test_address_1 = 0x0AAAA; # must be a valid address in the program memory

PC_test_address_2 = 0x15555; # must be a valid address in the program memory

-

.executing_code :

{

-

.= PC_test_address_1;

*(.pc_test_1.text)

.= PC_test_address_2;

*(.pc_test_2.text)

}

Note that the .pc_test_1.text and .pc_test_2.text are the names of the program counter test objects sections
from the library.

Specify the address for the pc_test_flag. Be sure, that the data in this address remains unchanged after a
non-power-on reset. The data can be specified in the linker command file as well.

F_pc_test_flag = F_wd_test_backup - 0x4;

The reference of the flag in the source code is as follows:

extern UInt16 _pc_test_flag; /* from Linker configuration file */

Note that the referenced symbols in the *.cmd file have the "F_" prefix, while the symbol in the application is
written without “F”.

Finally, call the test function separately with both objects.

IEC60730B_pc_test_result = FS_PC_Test(FS_PC_object_1, FS_PC_subroutine, (UInt16 *)&_pc_test_flag);

if(FS_PC_FAIL_CODE == IEC60730B_pc_test_result)

SafetyError();

CPU program counter test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 28

IEC60730B_pc_test_result = FS_PC_Test(FS_PC_object_2, FS_PC_subroutine, (UInt16 *)&_pc_test_flag);

if(FS_PC_FAIL_CODE == IEC60730B_pc_test_result)

SafetyError();

6.2.1 FS_PC_Test()
This is the main handling function of the program counter test. This function calls two other functions (the subroutine and object
functions). Both are entered as the input parameters. The third parameter is a flag, which can be useful in the diagnostics after a
failure of the program counter register.

Function prototype:

FS_RESULT FS_PC_Test(tFcn_pc pObject_function, tFcn_pc pSubroutine, unsigned short* PC_flag);

Function inputs:

pObject_function - The name of the object function (FS_PC_object_1 or FS_PC_object_2).

pSubroutine - This must be always the name of the subroutine (FS_PC_subroutine).

* PC_flag - The pointer to a flag that would not be overwritten after a non-power-on reset.

Function output:

typedef uint16_t FS_RESULT;

It can have the following two values:

FS_PC_FAIL (0x00000201)

FS_PC_PASS (0)

In case of an incorrect test execution, the PC_flag has a value of 1.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

This function cannot be interrupted.

6.2.2 FS_PC_subroutine()
The only interaction with this function is that it must be entered as the second input parameter of the FS_PC_Test() function.

Function prototype:

void FS_PC_subroutine(void);

Function inputs:

None

Function output:

Void

Function performance:

The function duration is included in the duration of the FS_PC_Test() function. Its size is 36 B.1

Calling restrictions:

It must be used only as the parameter of the FS_PC_Test function. It cannot be used separately.

CPU program counter test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 29

6.2.3 FS_PC_Object()
These are two standalone functions (vith suffixes "_1" and "_2") and they both occupy the standalone source file. These files
should be placed in appropriate addresses in the program memory as linkable objects.

Function prototype:

void FS_PC_object_1(void);

void FS_PC_object_2(void);

Function inputs:

None

Function output:

Void

Function performance:

The function duration is included in the duration of the FS_PC_Test() function. Its size is 36 B.1

Calling restrictions:

It must be used only as the parameter of the FS_PC_Test function. It cannot be used separately.

CPU program counter test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 30

Chapter 7
Variable memory test
The variable memory (RAM) test checks the on-chip RAM for DC faults. The March C and March X schemes are used as the
control mechanisms. The March C or March X schemes can be selected to perform the test. The handling functions for the
after-reset test ar different from the functions for the runtime test. Reserve some backup area defined in the RAM for both
functions. The size of this area must be at least the same as the tested block size. A RAM test is destructive. This is because the
data from the memory area with the variables, the stack area, and the functions placed in the RAM are moved away, rewritten
multiple times, and then moved back to the original memory area. The test procedure is very sensitive and cannot be interrupted.
The block diagrams for the RAM tests are shown in the following figures:

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 31 / 53

Figure 8. Block diagram for after-reset test of RAM

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 32

Figure 9. Block diagram for runtime test of RAM

7.1 Variable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Variable memory test in compliance with IEC/UL standards

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 33

Table 11. Variable memory test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Variable memory 4.2 – Variable memory DC fault B/R.1 Periodic self-test using
March test

7.2 Variable memory test implementation
The test functions are in the iec60730b_dsc_ram.c file. The functions are written in the assembly language. The prototypes and
definitions are placed in the iec60730b_dsc_ram.h file. The library common header files are iec60730b.h and iec60730b_core.h.
These must be included in the project as well.

The correct implementation of the variable memory test can be as follows.

First of all, define the backup memory properly. It must have at least the same size as the value of the "block_size" parameter.
Make sure that this memory is not used for any other purposes.

Have the tested data grouped in a specific section. While working on the application, you do not have to adjust the start address
and test range manually with every new variable added to the source code.

The RAM test consists of the following functions:

• FS_RAM_AfterReset()

• FS_RAM_Runtime()

• FS_RAM_CopyMemory()

• FS_RAM_SegmentMarchC()

• FS_RAM_SegmentMarchX()

The first two functions provide a complex RAM test. You do not have to work directly with the next functions.

/* start of section for ram test ,from Linker command file */
extern uint32_t _safety_ram;
/* end of section for ram test, from Linker command file */
extern uint32_t _end_safety_ram;
/* symbol from Linker command file */
extern uint32_t _ram_test_backup;
ui32RamTestStartAddress = (uint32_t)&_safety_ram;
ui32ActualAddress = ui32RamTestStartAddress;
ui16RamTestRange = (uint32_t)&_end_safety_ram - (uint32_t)&_safety_ram;
ui32BackupAddress = (uint32_t)&_ram_test_backup;
ui16BlockSize = RAM_TEST_BLOCK_SIZE;
/* after reset test */
RAM_test_result = FS_RAM_AfterReset((uint32_t*)ui32RamTestStartAddress, \
 (uint32_t*)ui32BackupAddress, \
 FS_RAM_SegmentMarchX, \
 ui16BlockSize, \
 ui16RamTestRange);
/* runtime test iteration */
RAM_test_result = FS_RAM_Runtime((uint32_t*)ui32RamTestStartAddress, \
 (uint32_t*)ui32BackupAddress, \
 FS_RAM_SegmentMarchX, \
 (uint32_t*)&ui32ActualAddress, \
 ui16BlockSize, \
 ui16RamTestRange); \
/* handling an error */
if(RAM_test_result == FS_RAM_FAIL)

Variable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 34

{
safetyErrors |= RAM_TEST_ERROR;
SafetyErrorHandling();
}

7.2.1 FS_RAM_AfterReset()
The after-reset test is done by the FS_RAM_AfterReset function. This function is called once after reset, when the execution time
is not critical. Reserve some free memory space for the backup area. The block size parameter cannot be larger than the size of
the backup area. The function firstly checks the backup area. Then the loop begins. Blocks of memory are copied to the backup
area and their locations are checked using the respective March test. The data is copied back to the original memory area and the
actual address is updated. This is repeated until the last block of memory is tested. If a DC fault is detected, the function returns
a fail pattern. The block diagram is shown in Figure 8.

Function prototype:

FS_RESULT FS_RAM_AfterReset(unsigned long *start_address, unsigned long *backup_address, tFcn_ram pMarch_type,
unsigned short block_size, unsigned short test_range);

Function inputs:

*start_address - The first address of the tested memory.

*backup_address - The address of the dedicated memory where the data from the tested memory are backed up.

pMarch_type - The pointer to the March function from the library. It specifies which March pattern is used.

block_size - The size of the test iteration. It cannot be larger than the size of the backup memory.

test_range - The size of the tested memory.

Function output:

typedef unsigned long FS_RESULT;

It can have the following two values:

FS_RAM_FAIL (0x00000401)

FS_RAM_PASS (0)

Function performance:

The function size is 92 B.1

The execution time depends on the memory size. It also varies with different block sizes and March methods used.1

Table 12. FS_RAM_AfterReset duration

Memory size (Bytes) Block size (Bytes) Duration time - March X Duration time – March C

0x100 0x20 215.4 µs 321.2 µs

0x100 0x40 220.5 µs 337.0 µs

0x100 0x80 249.1 µs 388.1 µs

0x200 0x20 408.6 µs 608.7 µs

0x200 0x40 401.6 µs 611.3 µs

0x200 0x80 424.1 µs 655.8 µs

0x400 0x20 795.2 µs 1183.5 µs

Table continues on the next page...

Variable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 35

Table 12. FS_RAM_AfterReset duration (continued)

Memory size (Bytes) Block size (Bytes) Duration time - March X Duration time – March C

0x400 0x40 763.9 µs 1159.5 µs

0x400 0x80 774.1 µs 1191.5 µs

Calling restrictions:

This function is used once after the MCU reset, when the execution time is not critical. It cannot be interrupted. The backup area
must have at least the same size as the tested block size defined by the block_size parameter.

7.2.2 FS_RAM_Runtime()
The runtime test is done by the FS_RAM_Runtime() function. This function performs the runtime test of the variable memory.
Reserve some free memory space dedicated for the backup area. The block size parameter cannot be larger than the size of the
backup area. During the first call, the function checks the backup area. After the call, the blocks of memory are processed in a
sequence. They are copied to the backup area and their locations are checked by the respective March test. The data is copied
back to the original memory area and the actual address and the block size are updated. This is repeated until the last block of
memory is tested. If a DC fault is detected, the function returns a fail pattern.

The block diagram is shown in Figure 9. The example of the function call is as follows:

Function prototype:

FS_RESULT FS_RAM_Runtime(unsigned long *start_address, unsigned long *backup_address, tFcn_ram pMarch_type,
unsigned long *actual_address, unsigned short block_size, unsigned short test_range);

Function inputs:

*start_address - The first address of the tested memory.

*backup_address - The address of the dedicated memory where the data from the tested memory are backed up.

pMarch_type - The pointer to the March function from the library. It specifies the March pattern used.

*actual_address - The adress of the variable that holds the actual address value.

block_size - The size of the test iteration. It cannot be larger than the size of the backup memory.

test_range - The size of the tested memory.

Function output:

typedef unsigned long FS_RESULT;

It can have the following two values:

FS_RAM_FAIL (0x00000401)

FS_RAM_PASS (0)

Function performance:

The function size is 118 B.1

The execution time depends on the block size and it is different for the March C and March X methods. 1

Table 13. FS_RAM_Runtime duration

Block size (Bytes) Duration time - March X Duration time - March C

0x4 8.50 µs 10.50 µs

0x8 11.12 µs 14.63 µs

Table continues on the next page...

Variable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 36

Table 13. FS_RAM_Runtime duration (continued)

Block size (Bytes) Duration time - March X Duration time - March C

0x20 21.63 µs 38.75 µs

0x40 43.00 µs 63.37 µs

Calling restrictions:

The function cannot be interrupted. The backup area must have at least the same size as the tested block size defined by the
block_size parameter. The execution time depends on the block size.

7.2.3 FS_RAM_SegmentMarchC()
This function performs a March C test of the memory block that is given by the start address and the block size. The content of the
tested memory remains changed after the execution of this function. It is used as an input parameter of the FS_RAM_AfterReset
and FS_RAM_Runtime functions.

Function prototype:

FS_RESULT FS_RAM_SegmentMarchC(unsigned long *start_address, unsigned short block_size);

Function inputs:

*start_address - The first address to perform the March test on.

block_size - The size of the memory to test.

Function output:

typedef unsigned long FS_RESULT;

This function can have the following two values:

FS_RAM_FAIL (0x00000401)

FS_RAM_PASS (0)

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

This function cannot be interrupted.

7.2.4 FS_RAM_SegmentMarchX()
This function performs a March X test of the memory block that is given by the start address and the block size. The content of
the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_RAM_SegmentMarchX(unsigned long *start_address, unsigned short block_size);

Function inputs:

*start_address - The first address to perform the March test on.

block_size - The size of the memory to test.

Function output:

typedef unsigned long FS_RESULT;

This function can have the following two values:

Variable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 37

FS_RAM_FAIL (0x00000401)

FS_RAM_PASS (0)

Function performance:

The information about the function performance is in Core self-test library – source code version.

7.2.5 FS_RAM_CopyMemory()
this is the internal function from the safety library. This function is used within the FS_RAM_AfterReset and FS_RAM_Runtime
functions to copy data from the tested memory to the backup and the other way round.

Function prototype:

void FS_RAM_CopyMemory(unsigned long *pMemSource, unsigned long *pMemDest, unsigned short uintLength);

Function inputs:

*pMemSource - The source address.

*pMemDest - The destination address.

uintLength - The size of the block to be copied.

Function output:

Void. The function does not return any values.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Variable memory test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 38

Chapter 8
CPU register test
The CPU register test checks all the CPU registers of the DSC 56800EX core, except for the program counter register, which is
checked by a separate test.

The registers are tested for a stuck-at condition by writing and reading of at least two opposite patterns. If possible, the patterns
consist of an alternating sequence of zeros and ones (0101…) applied to all bits of the respective register.

The tested registers are as follows:

• ALU registers A, B, C, D, Y, X0

• AGU registers R0, R1, R2, R3, R4, R5, N, M01, N3

• shadowed AGU registers R0, R1, R2, R3, R4, R5, N, M01, N3

• status register SR

• stack pointer SP

• loop registers LC, LC2, LA, LA2, HWS, HWS1

56F80xxx devices contains also FPU extension, but FPU registers are out of scope IEC60730B library v4.3
register tests !

 NOTE

The identification of the safety error/failure of a register is ensured by a specific return value of the corresponding function. In some
special cases, the error is not reported by the fail return, because it would require the action of a corrupted register. In that case,
the function waits in an endless loop for reset.

The block diagrams of the respective register tests are shown in the following figures:

Figure 10. Block diagram for data registers X0, A, B, C, D, pointer registers R0, R1, R2, R3, R4, R5, N, M01, N3,
included shadowed registers

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 39 / 53

Figure 11. Block diagram for data register Y

Figure 12. Block diagram for status register SR

Figure 13. Block diagram for stack pointer register SP

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 40

Figure 14. Block diagram for loop registers

8.1 CPU register test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

CPU register test in compliance with IEC/UL standards

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 41

Table 14. CPU registers test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU registers test CPU (1.1 – Registers) Stuck at B/R.1 Periodic self test

8.2 CPU register test implementation
The test functions for the CPU registers are placed in the iec60730b_dsc_reg.c file and written as assembler functions. The header
file with the return values and function prototypes is iec60730b_dsc_reg.h.

The iec60730b_dsc_core.h and iec60730b_dsc.h files are included and must be also placed in the project.

The CPU register test is performed by the following functions:

• FS_CPU_DataRegisters()

• FS_CPU_PointerRegisters()

• FS_CPU_ShadowRegistersE()

• FS_CPU_ShadowRegistersEX()

• FS_CPU_StatusRegister()

• FS_CPU_StackPointer()

• FS_CPU_LoopRegisters()

The error detection is recognized by the specific return value, as described in the following sections. There are several exceptions.
If some of the registers (Y, SR, SP) are corrupted, the application stays in an endless loop instead of the return error value. The use
of functions is the same after the reset and during runtime. The developer must pay attention to the functions when used during
runtime, as described in the following chapters. The use of functions is the same after the reset and during runtime. Pay attention
to the functions when used during runtime, as described in the calling restriction sub-chapters. The example of function calling is
as follows.

The following is an example of a function call:

#include "iec60730b_dsc.h"

if(REG_OK != FS_CPU_DataRegisters())

SafetyError();

8.2.1 FS_CPU_DataRegisters()
This function checks registers Y, X0, A, B, C, and D in a sequence. The registers are tested according to the block diagrams in
Figure 10 and Figure 11.

Function prototype:

FS_RESULT FS_CPU_DataRegisters(void);

Test patterns for respective registers:

Y : 0x5555_5555, 0xAAAA_AAAA

X0: 0x5555, 0xAAAA

A, B, C, D: 0x5555_5555_5, 0xAAAA_AAAA_A

Function inputs:

Void. No inputs are passed into the function.

CPU register test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 42

Function output:

The function can return the following values:

REG_OK 0

REG_FAIL_X0 3

REG_FAIL_A 4

REG_FAIL_B 5

REG_FAIL_C 6

REG_FAIL_D 7

Else, it can stay in an endless loop if the Y register is corrupted. This state must be observed by another safety mechanism (for
example; watchdog).

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

8.2.2 FS_CPU_LoopRegisters()
This function checks registers LC, LC2, LA, LA2, HWS, HWS1 in a sequence. Registers are tested according to block diagram
in Figure 14.

Function prototype:

FS_RESULT FS_CPU_LoopRegisters(void);

Test patterns for respective registers:

LC, LC2: 0x5555, 0xAAAA

LA, LA2, HWS, HWS1: 0x5555_55, 0xAAAA_AA

Function inputs:

Void. No inputs are passed into the function.

Function output:

typedef unsigned long FS_RESULT;

The function can return the following values:

REG_OK

REG_FAIL_LC

REG_FAIL_LA

REG_FAIL_HWS

REG_FAIL_HWS1

REG_FAIL_LA2

REG_FAIL_LC2

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

CPU register test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 43

8.2.3 FS_CPU_PointerRegisters()
This function checks pointer registers R0, R1, R2, R3, R4, R5, N, M01, N3 in a sequence. Registers are tested according to block
diagrams in Figure 10.

Function prototype:

FS_RESULT FS_CPU_PointerRegisters(void);

Test pattern:

R0 -R5, N: 0x5555_55, 0xAAAA_AA

N3, M01: 0x5555, 0xAAAA

Function inputs:

Void. No inputs are passed into the function.

Function output:

typedef unsigned long FS_RESULT;

This function can return the following values:

REG_OK 0

REG_FAIL_R0 15

REG_FAIL_R1 16

REG_FAIL_R2 17

REG_FAIL_R3 18

REG_FAIL_R4 19

REG_FAIL_R5 20

REG_FAIL_N 21

REG_FAIL_M01 22

REG_FAIL_N3 23

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

8.2.4 FS_CPU_ShadowRegistersE()
This function checks shadowed registers R2, R3, R4, R5, N3 in a sequence. The registers are tested according to the block
diagram in Figure 10.

Function prototype:

FS_RESULT FS_CPU_ShadowRegistersE(void);

Test patterns for respective registers:

TBD !!!

Function inputs:

Void. No inputs are passed into the function.

Function output:

CPU register test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 44

typedef unsigned long FS_RESULT;

The function can return the following values:

REG_OK 0

REG_FAIL_N3S 38

REG_FAIL_R2S 39

REG_FAIL_R3S 40

REG_FAIL_R4S 41

REG_FAIL_R5S 42

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

This function cannot be interrupted.

8.2.5 FS_CPU_ShadowRegistersEX()
This function checks shadowed registers R0, R1, N, M01 in a sequence. The registers are tested according to the block diagram
in Figure 10.

Function prototype:

FS_RESULT FS_CPU_ShadowRegistersEX(void);

Test pattern:

TBD !!

Function inputs:

Void. No inputs are passed into the function.

Function output:

typedef unsigned long FS_RESULT;

The function can return the following values:

REG_OK

REG_FAIL_R2S

REG_FAIL_R3S

REG_FAIL_R4S

REG_FAIL_R5S

REG_FAIL_N3S

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

8.2.6 FS_CPU_StackPointer()
This function checks the stack pointer register according to the block diagram in Figure 13.

CPU register test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 45

Function prototype:

FS_RESULT FS_CPU_StackPointer(void);

Test pattern:

SP: 0x5555_55, 0xAAAA_AA

Function inputs:

Void. No inputs are passed into the function.

Function output:

typedef unsigned long FS_RESULT;

The function can return REG_OK, or it can stay in an endless loop in case of an error. This state must be observed by another
safety mechanism (for example; watchdog).

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

8.2.7 FS_CPU_StatusRegister()
This function checks the status register. It is tested according to the block diagram in Figure 12.

Function prototype:

FS_RESULT FS_CPU_StatusRegister(void);

Test pattern:

SR: 0x55, 0xAA, 0x8, 0x12, 0x20, 0x30

Function inputs:

Void. No inputs are passed into the function.

Function output:

typedef unsigned long FS_RESULT;

The function can return REG_OK, or it can stay in an endless loop in case of an error.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

CPU register test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 46

Chapter 9
Stack test
This test routine tests the overflow and underflow conditions of the application stack. The overflow or underflow of the stack can
occur if the stack is controlled incorrectly, or when a very small stack area is defined for the given application.

The principle of the test is to fill the area below and above the stack with a known pattern. Define these areas in the linker
configuration file in the same way as the stack. The initialization function then fills these areas with your defined pattern. The
pattern must have a value that does not appear elsewhere in the application. The test is performed after the reset and during
application runtime in the same way. The purpose is to check if the exact pattern is still written in these areas. If it is not, it is a sign
of incorrect stack behavior. If this occurs, then the fail return value from the test function must be processed as a safety error.

9.1 Stack test in compliance with IEC/UL standards
The stack test is an additional test, not directly specified in the IEC60730 annex H table.

9.2 Stack test implementation
The test functions for the stack and the initialization function are placed in the iec60730b_dsc_stack.c file. The functions are written
in the assembler language. The prototypes and definitions are in the iec60730b_dsc_stack.h file. The library common header files
are iec60730b.h and iec60730b_core.h. They must be included in the project as well.

9.2.1 Linker setup
The size and placement of the application stack is generally defined in the linker configuration file. Therefore, define the areas
below and under the stack here as well. There are several methods to achieve this and only one example is shown here. The
higher the size dedicated for the tested areas, the greater the chance that a potential error is recognized in time.

The following is an example code from the CodeWarrior linker command file (*.cmd).

_min_stack_size = 0x100;

F_stack_test_block_size = 0x8;

F_stack_test_p_1 = _HEAP_END + 1;

F_stack_test_p_2 = F_stack_test_p_1 + F_stack_test_block_size;

. = F_stack_test_p_2;

. = ALIGN(4);

_stack_addr = . + 1;

_stack_end = _stack_addr + _min_stack_size;

. = _stack_end;

F_stack_test_p_3 = _stack_end + 1;

F_stack_test_p_4 = F_stack_test_p_3 + F_stack_test_block_size;

. = F_stack_test_p_4 + 1;

} > .x_internal_RAM # internal RAM for data

// ____________

// |____________| --> F_stack_test_p_1ADR

// |____________|ADR + 0x1

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 47 / 53

// |____________|

// |____________| --> F_stack_test_p_2ADR + 0x8

// | |--> _stack_addr

// | |

// | |

// | STACK |

// | |

// | |

// | |

// | |

// |____________|

// |____________| --> F_stack_test_p_3

// |____________|

// |____________|

// |____________| --> F_stack_test_p_4

9.2.2 FS_StackInit()
The purpose of initialization is to fill the defined areas with a given pattern. The first thing is to put the values from the linker
configuration file into variables. Then, define the rest of the parameters needed for the initialization function.

Example of initialization:

#include "iec60730b.h"

#define STACK_TEST_PATTERN 0x77777777

extern uint32_t _stack_test_block_size;
#define STACK_TEST_BLOCK_SIZE (uint32_t)&_stack_test_block_size

extern uint16_t _stack_test_p_2;
extern uint16_t _stack_test_p_3;

FS_StackInit(STACK_TEST_PATTERN, (uint16_t *)&_stack_test_p_2, (uint16_t
*)&_stack_test_p_3, STACK_TEST_BLOCK_SIZE);

Function prototype:

void FS_StackInit(unsigned short test_pattern, unsigned short *first_address,unsigned short *second_address, unsigned
short block_size);

Function inputs:

test_pattern - The pattern to be written into the areas.

*first_address - The closest address to the beginning of the stack.

*second_address - The closest address to the end of the stack.

block_size - The size of areas.

Stack test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 48

Function output:

Void. The function does not return any values.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

9.2.3 FS_StackTest()
The testing procedure is the same after the reset and during runtime. The function checks if the areas are not rewritten with a
content different from the defined pattern. The inputs for the testing functions must be the same as for the initialization function.

Function prototype:

FS_RESULT FS_StackTest(unsigned short test_pattern, unsigned short *first_address, unsigned short *second_address,
unsigned short block_size);

Function inputs:

test_pattern - The pattern to be written into the areas.

*first_address - The closest address to the beginning of the stack.

*second_address - The closest address to the end of the stack.

block_size - The size of the areas.

Function output:

typedef unsigned long FS_RESULT;

It can have the following two values:

FS_STACK_FAIL (0x00000501)

FS_STACK_PASS (0)

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

None.

Stack test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 49

Chapter 10
Watchdog test
The watchdog test tests the watchdog timer functionality. The test checks whether the watchdog timer can cause a reset and
whether the reset happens at the expected time. Before the start of the test, the watchdog must be configured for use in the
respective application. The next step before the test is the setup of the independent device timer, which is used for watchdog
timeout comparison. The first function for the watchdog testing (setup function) is called after that. This function refreshes the
watchdog timer, clears the reset counter, clears the “test uncomplete” flag, and captures the device timer counter value during
an endless loop. This function should be called only once after the Power-On Reset (POR). After the watchdog reset, the check
function must be called. This function should be called after every reset, except for the POR. This function checks whether the
captured device timer counter value corresponds to the expected watchdog timeout value. The next check is whether the number
of watchdog resets does not exceed the limit value. You can choose what action must be made after an incorrect result. Due
to safety requirements, you have limited options when choosing the clock source for the watchdog and device timer. The first
condition is that the watchdog timer clock cannot be the same as the watchdog bus interface clock. Check the device reference
manual for the watchdog timer clock source options. The second condition is that the watchdog timer clock cannot be the same
as the device timer clock.

10.1 Watchdog test in compliance with IEC/UL standards
The watchdog test is not directly specified in the IEC60730 - annex H table, but it partially fulfils the safety requirements according
to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998 standards described in the following table:

Table 15. Watchdog test in compliance with the standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Watchdog test 3. Clock Wrong frequency B/R.1 Frequency monitoring

Watchdog test 8. Monitoring devices
and comparators

Any output outside
the static and dynamic
functional specification

B/R.1 Tested monitoring

10.2 Watchdog test implementation
The test functions for the watchdog are placed in the iec60730b_dsc _wdg.c file. The header file is iec60730b_dsc_wdg.h. The
iec60730b.h and iec60730b_core.h files must be placed in the application as well.

You must have some free space in the RAM memory, which is not corrupted after the non-POR.

This memory is used for the user-defined variable of the "fs_wdog_test" type, which is a structure with three members. It is defined
in the iec60730b_dsc _wdg.h file.

An important condition for performing the watchdog test is to configure the watchdog module and the device timer before the
beginning of the test.

Ensure the handling of the functions. To identify what is the source of the reset, use the reset status register (SIM_RSTAT). The
common configuration is that if an unwanted result is found by the “check” function, the program stays in an endless loop in the
function. This causes the application to stay in the loop of watchdog resets. By entering zero as the fourth input value of the "check"
function, the endless loop is not activated. In that case, ensure that the application is put into a safe state.

An example of the watchdog test implementation is as follows:

extern uint32_t _wd_test_backup; /* from Linker configuration file */
#define WATCHDOG_TEST_VARIABLES ((fs_wdog_test *) &_wd_test_backup)
watchdogEnable(COP_TIMEOUT_IN_MICRO_SECONDS);

NXP Semiconductors

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
User's Guide 50 / 53

ui16ResetStatus = SIM_GetResetStatusFlags(SIM);
if(ui16ResetStatus != SIM_RSTAT_COP_CPU_MASK)
{
 PIT1_initialization(PIT1_RELOAD, PIT1_CLOCK_DIV);
 FS_watchdog_setup(WATCHDOG_TEST_VARIABLES, PIT1_BASE, PIT_32BIT_COUNTER);
}
else
{
 FS_watchdog_check(ui32CopTestLimitHigh, \
 ui32CopTestLimitLow, \
 WATCHDOG_RESETS_LIMIT, \
 ENDLESS_LOOP_ENABLE, \
 WATCHDOG_TEST_VARIABLES);
}

10.2.1 FS_watchdog_setup()
This function clears the reset counter and the “test uncomplete” flag. It is a member of the "fs_wdog_test" structure. It refreshes
the watchdog to start counting from zero. Within the endless waiting loop, the value from the PIT counter is periodically stored in
the reserved area in the RAM.

The function never reaches its exit, it is waiting in an endless loop for a reset.

Function prototype:

void FS_watchdog_setup(fs_wdog_test* pWatchdogBackup, unsigned short pit_base, unsigned char counter_32_bit);

Function inputs:

pWatchdogBackup - The pointer to a structure of the "fs_wdog_test" type, defined in the header file.

pit_base - The base address of the PIT timer.

counter_32_bit - Enter 0 if the device has a 16-bit PIT counter and enter 1 or non-zero value if the device has a 32-bit PIT counter.

Function output:

Void. The function does not return any values.

Function performance:

The function duration depends on the watchdog counter timeout value.

Calling restrictions:

The watchdog timer and the PIT must be configured correctly. A variable of the "fs_wdog_test" type must be declared and placed
into a reliable place. Interrupts should be disabled during the function execution.

10.2.2 FS_watchdog_check()
This function compares the captured value of the PIT counter with pre-calculated limit values and checks whether the watchdog
reset counter overflows. If the function is called after a non-watchdog reset, the "wd_test_uncomplete_flag" is set. With the
"endless_loop_enable" parameter, the endless loop within the function is enabled or disabled (by setting it to the 1 or 0 values).
If enabled, the function ends up in an endless loop in the following cases:

• Entering after non-watchdog or non–POR resets.

• The counter from the watchdog test does not fit the limit values.

• The watchdog resets exceed the defined limit value.

Function prototype:

Watchdog test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 51

void FS_watchdog_check(unsigned long limit_high, unsigned long limit_low, unsigned short resets_limit, unsigned short
endless_loop_enable, fs_wdog_test* pWatchdogBackup);

Function inputs:

limit_high - The pre-calculated upper limit value of the PIT counter in the watchdog test.

limit_low - The pre-calculated low limit value of the PIT counter in the watchdog test.

resets_limit - The defined limit of watchdog resets.

endless loop enable - If this is 1, the endless loop is activated in the function.

pWatchdogBackup - The pointer to a structure of the "fs_wdog_test" type, defined in the header file.

Function output:

Void. The function does not return any values.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

Execute the respective setup function first.

Watchdog test implementation

IEC60730_B_56800EX_Library_UG_v4_3, Rev.0, 09/2022
NXP Semiconductors 52

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release:
Document identifier: IEC60730B56800EXL43UG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Core self-test library
	1.1 Core self-test library – object-code version
	1.2 Core self-test library – source-code version
	1.2.1 Dedicated functions

	1.3 Functions performance measurement

	2 Analog input/output test
	2.1 Analog input/output test in compliance with IEC/UL standards
	2.2 Analog input/output test implementation
	2.2.1 FS_AIO_InputTrigger()
	2.2.2 FS_AIO_InputInit_CYCLIC()
	2.2.3 FS_AIO_InputSet_CYCLIC()
	2.2.4 FS_AIO_InputCheck_CYCLIC()

	3 Clock test
	3.1 Clock test in compliance with IEC/UL standards
	3.2 Clock test implementation
	3.2.1 FS_CLK_QTIMER_Check()

	4 Digital input/output test
	4.1 Digital input/output test in compliance with IEC/UL standards
	4.2 Digital input/output test implementation
	4.2.1 FS_DIO_Output()
	4.2.2 FS_DIO_ShortToAdjSet()
	4.2.3 FS_DIO_ShortToSupplySet()
	4.2.4 FS_DIO_InputExt()

	5 Invariable memory test
	5.1 Invariable memory test in compliance with IEC/UL standards
	5.2 Invariable memory test implementation
	5.2.1 Computing of CRC value in linking phase of application
	5.2.2 Test performed once after MCU reset
	5.2.3 Runtime test
	5.2.4 FS_flash_HW16_data()
	5.2.5 FS_flash_HW16_program()
	5.2.6 FS_flash_SW16_data()
	5.2.7 FS_flash_SW16_program()

	6 CPU program counter test
	6.1 CPU program counter test in compliance with IEC/UL standards
	6.2 CPU program counter test implementation
	6.2.1 FS_PC_Test()
	6.2.2 FS_PC_subroutine()
	6.2.3 FS_PC_Object()

	7 Variable memory test
	7.1 Variable memory test in compliance with IEC/UL standards
	7.2 Variable memory test implementation
	7.2.1 FS_RAM_AfterReset()
	7.2.2 FS_RAM_Runtime()
	7.2.3 FS_RAM_SegmentMarchC()
	7.2.4 FS_RAM_SegmentMarchX()
	7.2.5 FS_RAM_CopyMemory()

	8 CPU register test
	8.1 CPU register test in compliance with IEC/UL standards
	8.2 CPU register test implementation
	8.2.1 FS_CPU_DataRegisters()
	8.2.2 FS_CPU_LoopRegisters()
	8.2.3 FS_CPU_PointerRegisters()
	8.2.4 FS_CPU_ShadowRegistersE()
	8.2.5 FS_CPU_ShadowRegistersEX()
	8.2.6 FS_CPU_StackPointer()
	8.2.7 FS_CPU_StatusRegister()

	9 Stack test
	9.1 Stack test in compliance with IEC/UL standards
	9.2 Stack test implementation
	9.2.1 Linker setup
	9.2.2 FS_StackInit()
	9.2.3 FS_StackTest()

	10 Watchdog test
	10.1 Watchdog test in compliance with IEC/UL standards
	10.2 Watchdog test implementation
	10.2.1 FS_watchdog_setup()
	10.2.2 FS_watchdog_check()

