

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

A Light-Weight TLS and X.509 Profile
Abstract
This document describes a restricted profile for TLS 1.2 suitable for application in
constrained devices such as IoT devices. It also describes a profile for X.509 public key
certificates. The main advantage of the TLS profile is that it severely restricts the
number of optional features being used and limits the choice of cipher suites to a single
one. This can result in smaller and less complex implementations, with a smaller attack
surface. The profile for X.509 has a similar aim: improving security by reducing
complexity and optional features. It is assumed that the reader is familiar with the
details of TLS 1.2 as specified in RFC 5246 and with the X.509v3 standard described in
RFC 5280 and how it is used by web servers as specified by the CA/Browser Forum.

1. Introduction
Recently, the standardization of TLS version 1.3 has been finalized (see [RFC8446]).
However, it is expected that TLS version 1.2 [RFC5246] will still be around for quite
some time to come.
There are good reasons that TLS 1.2 is being succeeded by TLS 1.3. Since 2008, when
TLS 1.2 was first published, the network security landscape has evolved significantly.
Multiple security vulnerabilities have been discovered in these past years: in the
specification of TLS 1.2 itself, the cryptography it uses and the various commonly-
used implementations of it.
However, all kinds of relatively low-cost consumer and embedded devices,
particularly IoT devices, as well as the networking infrastructure on which it depends,
will likely keep using TLS 1.2 for the foreseeable future. These devices are typically
constrained devices, having little processing power, working memory and storage.
They often run a software stack that has not been developed and is not actively
maintained by the device manufacturer, but is, for example, an open source stack or
provided by the board and/or IC manufacturer(s).

1.1. Light-Weight TLS profile

Even though TLS 1.2 is no longer state of the art and over the years multiple security
problems have been discovered around its use, this does not mean that TLS 1.2 is
completely insecure in and of itself. A significant source of security problems with
implementations of TLS 1.2 has been the large number of optional features, the
various choices that can or have to be made during connection establishment and
backwards compatibility options to support earlier and weaker versions of the
protocol.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

Examples of these include:
 CVE-2012-4929, a.k.a. “CRIME”: a session hijacking attack using information

leaked when using optional compression feature
 CVE-2013-0169, a.k.a. “Lucky Thirteen”: a timing side-channel attack during

handling of invalid messages
 CVE-2014-0160, a.k.a. “Heartbleed”: attacking the implementation of an optional

heart-beat extension
 CVE-2014-8730, a.k.a. “POODLE” (newest variant): attacking TLS/SSL versions

before TLS 1.2 on the improper checking of padding bytes after decryption
 CVE-2015-7575, a.k.a. “SLOTH”: attacking old hash functions
 CVE-2015-0204, a.k.a. “FREAK”: a downgrade attack to export-grade RSA
 CVE-2015-0205, a.k.a. “SKIP-TLS”: an attack on the TLS state machine

implementations to skip encryption altogether
 CVE-2015-4000, a.k.a. “Logjam”: a downgrade attack to export-grade Diffie-

Hellman
 CVE-2016-0800, a.k.a. “DROWN”: a protocol attack on servers that still support

SSLv2
 CVE-2017-13099 (and many others), a.k.a. “ROBOT””: attacking a vulnerability

from 1998 with RSA, that was still not properly fixed

An overview of various other attacks and vulnerabilities is also provided by
[RFC7457].
When making sensible and secure choices by using the right configuration
parameters, choosing the correct cryptographic algorithms, restricting most of the
optional features in TLS 1.2, and removing the backwards compatibility features, we
believe it can still be used in a way that is sufficiently secure for a large number of use
cases.
This can be accomplished in such a way that the resulting profile is significantly
reduced in complexity while remaining backwards compatible to existing TLS 1.2
implementations commonly deployed in cloud servers. The resulting security level
can and will never be exactly comparable to what TLS 1.3 can offer. However, for
many IoT devices and use cases, this may simply not be necessary in the near future.
This document specifies exactly such a configuration as a TLS 1.2 profile. It is called
Light-Weight TLS (LWTLS).

1.2. Light-Weight X.509 certificate profile

In all versions of TLS and DTLS, authentication based on a Public Key Infrastructure
(PKI) using X.509 certificates1 is the default and the most widely used method for the

1 X.509 is defined by the standardization sector (ITU-T) of the International Telecommunications
Union (ITU) as Recommendation X.509 (for the latest version from 2016 see [X.509]) and is also

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

communication peers to authenticate each other. Like TLS (including its predecessor
SSL), X.509 has a very long history and has been continuously extended by adding
new options and features as well as deprecating older features. Due to the complexity
of the certificate format and the certificate validation rules that is further increased
by the abundance of options and features that need to be taken into account,
implementing algorithms to parse and validate certificates is a very difficult task and
countless security vulnerabilities have been discovered in implementations over the
years. Apart from its inherent implementation security issues, the complexity of
X.509 certificate validation also significantly increases processing overhead and code
size. In addition, certificates and certificate chains can grow very large depending on
which options and features are selected during creation, how much additional
metadata is added and how it is encoded.
Therefore, constrained embedded devices are especially impacted by authentication
based on X.509 certificates due to their very limited amount of memory, processing
capacity and bandwidth. Also, the software (firmware) on constrained devices is
typically difficult to keep updated over the device lifetime in case security
vulnerabilities are discovered or in case configuration changes in the PKI need to be
supported.
In contrast to TLS, no successor to X.509 is in sight. Several extensions of TLS have
been standardized to add support for alternatives that do not rely on a PKI (like pre-
shared keys (PSK) [RFC4279], raw public keys [RFC7250] and OpenPGP keys
[RFC6091]) and the latest version TLS 1.3 added optional support for pre-shared keys
and raw public keys in the base standard without extensions. These alternatives
(especially PSKs) have been included in many connectivity standards for constrained
devices (e.g. CoAP, Thread) as they significantly decrease the burden on the
constrained device. For larger scale deployments or in open networks however, only
a PKI based authentication provides enough flexibility and ease of deployment to be
feasible. Attempts have also been made to define extensions specifying PKI-based
alternatives for X.509 certificates for TLS (e.g. ECQV implicit certificates [SEC4]
[ECQV], ETSI/IEEE certificates [certIEEE1] [certIEEE2]), but none have ever left draft
status.
Similar to the situation with TLS 1.2, X.509 certificates will still have to be supported
for the foreseeable future (in case of X.509 probably even longer as no alternative is
in sight), even by low-cost constrained devices. As attempted by the Light-Weight
profile for TLS 1.2 in section 2, the goal of section 3 is to define a Light-Weight profile
for X.509 that improves implementation security and reduces memory, processing

standardized by the International Organization for Standardization (ISO) as ISO/IEC 9594-8 (for the
latest version ISO/IEC 9594-8:2017 see [ISO9594]). In the context of TLS, the term “X.509 certificate”
refers to the profile for version 3 of the X.509 certificate format (X.509v3) defined by the IETF in
[RFC5280] and [RFC3280].

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

and bandwidth requirements. This is achieved by pre-defining sensible and secure
choices, removing optional or outdated features, simplifying validation rules and
providing guidance on creating compact certificates and certificate chains. To ensure
interoperability with existing cloud services, the choices made are based on how
X.509 certificates are typically used in practice.
The Light-Weight X.509 profile is meant to complement the Lightweight TLS profile
(e.g. by matching the crypto choices made there for TLS 1.2), but it can also be used
independently.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

2. Light-Weight TLS
As mentioned in the introduction, the main target for LWTLS is the class of
constrained devices, especially IoT devices. However, in the definition of LWTLS there
is nothing that restricts it to this class of devices.2 The LWTLS profile can be used by
anyone wishing to configure TLS 1.2 as secure as possible without losing
compatibility to plain standard TLS 1.2.
The first and foremost requirement of LWTLS is that it is compatible with servers
implementing regular TLS 1.2. This means that it does not introduce any new
extensions, cryptographic algorithms or protocol options. (This also somewhat
restricts what can be done to achieve as much security as possible.)
The second requirement is that it removes or disables any obsolete, unused or
insecure TLS 1.2 protocol options. All backward compatibility to earlier TLS versions
is dropped, as this automatically prevents any version downgrade attacks. No
outdated and insecure cryptographic algorithms are supported. Only up-to-date
secure cryptographic algorithms are supported.
The third requirement is that the LWTLS profile is fixed. Extensibility is considered
undesirable as it is a potential future security risk. As mentioned before, LWTLS does
not introduce any new extensions itself. Also, runtime reconfigurability can pose a
security risk, so an established LWTLS connection is not reconfigurable or
renegotiable.
As an added benefit, both for security and device resource requirements, it is
expected that an optimized LWTLS implementation is less complex, smaller and
requires less device resources such as RAM and processing power.
The following description follows closely the description and ordering of the sections
of the original TLS 1.2 protocol in [RFC5246]. It is assumed that the reader is well-
acquainted with the contents of that document, especially with the concepts and
terms introduced in it. Technical details and behavior of LWTLS that are not
specifically defined below are understood to be as specified for TLS 1.2 in [RFC5246].
In addition to [RFC5246], LWTLS makes use of the following additional RFCs:
 RFC 8422 “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer

Security (TLS) Versions 1.2 and Earlier” for the ECDHE_ECDSA key exchange
algorithm and client authentication mechanism ‘ECDSA_sign’

 RFC 6655 “AES-CCM Cipher Suites for Transport Layer Security (TLS)” for the
AES-CCM data encryption algorithm

 RFC 7251 “AES-CCM Elliptic Curve Cryptography (ECC) Cipher Suites for TLS” for
the definition of the TLS_ECDHE_ECDSA_WITH_AES_128_CCM cipher suite

2 LWTLS can also be used in the boot-ROM of an SoC or in trusted firmware running in internal RAM,
where there are code size restrictions, for example, for implementing a firmware update procedure.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

 RFC 6066 “Transport Layer Security (TLS) Extensions: Extension Definitions”,
section 3 “Server Name Indication”

 RFC 5077 “Transport Layer Security (TLS) Session Resumption without Server-
Side State”

 RFC 4347 “Datagram Transport Layer Security Version 1.2”

2.1. HMAC and the Pseudorandom Function

Like TLS 1.2, LWTLS 1.2 uses the HMAC construction to compute a pseudo-random
function (PRF) needed to do expansion of secrets into blocks of data for the purposes
of key generation or validation. LWTLS uses the exact same HMAC based on SHA-256
as TLS 1.2.

2.2. LWTLS Record Protocol

The TLS 1.2 Record Protocol definitions are used without any modifications to
preserve backwards compatibility. However, a number of restrictions and
simplifications are made to both simplify implementations and ensure improved
security.
The four protocols described for TLS 1.2 that use the record protocol are also used in
LWTLS: the handshake protocol, the alert protocol, the change cipher spec protocol,
and the application data protocol. Apart from the four content types specified in
[RFC5246], no additional record content types are supported by LWTLS.
So, every LWTLS Record Protocol message is a valid one in standard TLS 1.2, however,
the opposite may not always be the case.

2.2.1. Connection states
The connection state for LWTLS is identical to that of TLS 1.2. As in TLS 1.2, the initial
current state always specifies that no encryption, compression, or MAC will be used.
While in this state, application data must not be sent.
When the sequence number reaches 264-1, no renegotiation is done (as that is not
supported by LWTLS). Instead, a fatal alert is sent and the connection is terminated.

2.2.2. Record layer and protection
In contrast to TLS 1.2, LWTLS has no support for compression and decompression,
nor for fragmentation and defragmentation. Applications using LWTLS must
therefore take care that their messages do not exceed 214 bytes.
In the initial current state, the cipher suite is TLS_NULL_WITH_NULL_NULL. When
this cipher suite is selected, no application data must be sent.
LWTLS only supports AEAD mode for record payload protection; CBC mode is not
supported. All key calculation is done as for TLS 1.2.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

2.3. LWTLS Handshaking Protocols

LWTLS supports the same three subprotocols for handshaking as [RFC5246]:
 Change Cipher Spec protocol
 Alert protocol
 Handshake protocol

2.3.1. Change Cipher Spec protocol
The Change Cipher Spec protocol used by LWTLS is unchanged from that specified by
TLS 1.2. However, as renegotiation is not supported by LWTLS, the complications for
the Change Cipher Spec protocol associated with that do not exist for LWTLS.

2.3.2. Alert protocol
LWTLS does not support the AlertLevel “warning”. Sent alert messages in LWTLS
must always be “fatal”, therefore any received alert shall always be considered fatal,
resulting in the immediate termination of the connection. In case any other
connections exist corresponding to the same session, these must be terminated too.
Such connections must not be resumed.

2.3.3. Handshake protocol overview
In contrast to TLS 1.2, the Server must always send a Server Certificate message.
Server authentication is required. In essentially all real-world use cases, especially for
IoT, it makes no sense to connect to an unknown server.

Figure 1 Message flow for a full LWTLS handshake (* indicates optional messages)

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

2.3.4. Hello Request
As renegotiation is not supported by LWTLS, a server supporting LWTLS should not
send any Hello Request messages. An LWTLS client must ignore any such message.

2.3.5. Client Hello
The ClientHello message is as defined in TLS 1.2 with the following restrictions:
 client_version: This field must be set to 3.3 (the highest version supported by TLS

1.2).
 cipher_suites: This field must only contain

TLS_ECDHE_ECDSA_WITH_AES_128_CCM.
 compression_methods: This field must only contain CompressionMethod.null (‘0’,

no compression).

For further restrictions on extensions, see 2.3.7 below.
As in [RFC5246], after sending the ClientHello message, the client waits for a
ServerHello message. Any handshake message returned by the server, except for a
HelloRequest, is treated as a fatal error.

2.3.6. Server Hello
The ServerHello message is exactly the same as for TLS 1.2. If the server only supports
LWTLS, it should reject any ClientHello message that does not conform to the
restrictions specified in section 2.3.5 above. It should also reject any ClientHello
message that does not contain the mandatory signature algorithms extension, or if it
contains any other extensions than the allowed ones, as specified in section 2.3.7
below.

2.3.7. Hello extensions
LWTLS supports the following extensions in the ClientHello message:
 Signature algorithms extension, as defined in TLS 1.2
 Server Name Indication (SNI) extension, as defined in section 3 of [RFC6066]
 SessionTicket extension, as defined in [RFC5077]

For the signature algorithms extension in LWTLS, the only supported hash algorithm
is SHA-256 and the only supported signature algorithm is ECDSA. This extension is
mandatory for LWTLS. The client must send it and if the server does not accept it, the
connection must be terminated.
The Server Name Indication (SNI) extension is required by some cloud service
operators to be able to present multiple certificates from the same IP address. It is
not mandatory, but if it is used, the client must check that the server name in the
extension matches that on the certificate (as specified in [RFC6066]).
The ticket-based session resumption is used exactly as specified in [RFC5077]. The
use of this extension is optional.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

No other extensions are supported by LWTLS. The procedure for the detection of the
presence of extensions is as specified in [RFC5246]. When a client requests session
resumption, it must send the same extensions as it would send if it were not
attempting resumption.

2.3.8. Server Certificate
As server authentication is mandatory in LWTLS, a server must always send a
Certificate message during the handshake. As LWTLS clients only support ECC
algorithms, all public keys included in the certificate chain, including the server public
key itself, must be ECDSA keys.

2.3.9. Certificate Request
The server can optionally request client authentication. If it does, it must request only
the ECDSA_sign mechanism in its CertificateRequest message.

2.3.10. Server Key Exchange Message
The server must send a ServerKeyExchange message. It must contain an ephemeral
ECDH public key (freshly generated) and the specification of the elliptic curve
secp256r1 (NamedCurve value 23, as defined in [RFC8422]). This message must be
signed using the ECDSA private key corresponding to the public key in the server’s
certificate.

2.3.11. Client Certificate
In case of client authentication, the client public key in the Certificate message must
be an ECDSA key. Any intermediate public keys in the certificate chain, if present, are
preferably also ECDSA keys.

2.3.12. Client Key Exchange message
As LWTLS only supports ECDHE, the ClientKeyExchange message will always be of
the ClientDiffieHellmanPublic variant.

2.3.13. Certificate Verify
As specified in [RFC5246], this message is only sent following a ClientCertificate
message. LWTLS only supports client authentication through ECDSA_sign. The
structure of the message is as defined in [RFC8422], with sha_hash being a SHA-256
hash value.

2.4. Cryptographic computations

The calculation of the master_secret value is done exactly as specified for TLS 1.2.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

2.5. LWTLS mandatory cipher suite

As listed in the restrictions on the ClientHello above, LWTLS only supports the cipher
suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM (value {0xC0, 0xAC}, as defined in
[RFC7251] and [RFC8422]) and only ECDSA_sign as client authentication mechanism
(as defined in [RFC8422]). The support for ECC is even further restricted so that
LWTLS clients (and, optionally, servers) only need to support a limited set of ECC
options.
The only ECC curve supported by LWTLS is secp256r1 (a.k.a. P-256). Furthermore,
LWTLS implementations only support uncompressed points.

2.6. Application data protocol

Application data messages are carried by the record layer. They are encrypted based
on the current connection state. Application protocols must not continue to exchange
data (in plain) after the TLS connection is closed.

2.7. Additional behavioral requirements

In addition to the requirements above, closure of the TLS connection must also result
in closure of the network connection.

2.8. Security considerations

The choice for the cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM results in
the use of the most up-to-date and state-of-the-art cryptographic algorithms defined
in accepted standards and supported by most TLS implementations.
The choice for ECDHE results in some amount of forward secrecy: the security of
connections based on different ECDH keys will not depend on each other’s secret
keys. LWTLS implementations must therefore always generate a new private key for
each new connection. However, the RNG of a constrained device (such as typically the
case with LWTLS) may still have a bias, making the security perhaps less than optimal.
In case of a resumed connection, however, the connection security will depend on the
confidentiality of the keys of the original connection. In case ticket-based session
resumption is used, the security may also depend on the key storage and management
practices on the server side. This may seem like session resumption is not the most
secure feature to support. However, session resumption allows a constrained device
to set up a TLS connection very quickly without doing any public key calculations,
which can be very costly and slow on a constrained device.
The choice for AES-CCM instead of, for example, AES-GCM, which seems to be
commonly preferred by server implementations, is driven by the fact that the
implementation of AES-CCM on a constrained device without (complete) hardware
acceleration is typically more efficient than that of AES-GCM.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

2.9. Light-Weight DTLS

The LWTLS profile can also be applied to DTLS 1.2 [RFC6347], resulting in a Light-
Weight DTLS (LWDTLS) profile. All the same restrictions that apply for LWTLS also
apply for LWDTLS.
The result is large compatible with the DTLS profile for CoAP [RFC7252]. The main
difference is that CoAP has opted for the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8
cipher suite, using 8 bytes for authentication, instead of
TLS_ECDHE_ECDSA_WITH_AES_128_CCM, which uses the full 16 bytes. Another
difference is that LWDTLS lacks support for pre-shared AES keys and raw public
ECDSA keys.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

3. Light-Weight X.509 profile
The Light-Weight X.509 certificate profile is mostly defined as a simplified subset of
the “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile” standardized by the IETF as RFC5280 (for further reference see
[RFC5280]). The guidelines for compact certificate creation are additionally based on
the “Baseline Requirements for Contents of Publicly Trusted SSL/TLS Certificates”
specified by the CA/Browser Forum (For further reference see [CABreq]). As in the
Lightweight TLS profile, a deliberate choice is made to support only one
cryptographic algorithm for each kind of cryptographic operation and the choices
made match those from the TLS profile.

3.1. Certificate and certificate path validation rules

Because of the fixed choices for cryptographic algorithms and supported options,
certificate parsing and validation can be simplified in many cases (e.g. by just
comparing individual fields or even a complete substructure of the certificate against
the only supported values). The certificate validation rules are detailed in the
following subsections based on the certificate type they are applied against. Only the
contents (payload) of the fields listed here are validated, for the rest of the certificate
structure only consistency with the X.509 certificate format is checked (e.g. field type,
consistent length). This also applies to X.509 extensions, so Certificate Policies, Policy
Mappings, Policy Constraints, Name Constraints, Certificate Revocation Lists and all
related X.509 extensions as well as any other extensions not explicitly mentioned in
this profile are not supported.

3.1.1. All certificates
All types of certificates will contain the following fixed value fields with only the
predefined payload value allowed as specified by the following table (Table 1).
The X.509v3 extension fields of the certificate are validated based on the type of
certificate, but for all types of certificates it must be checked that there are no critical
extensions present that are not supported.

3.1.2. Intermediate CA certificates
In addition to the checks that apply to all types of certificates, it must be verified for
all intermediate CA certificates that the Basic Constraints x509 extension is present
and its cA field is set to true. If the optional maxPathLen field is present it must be
verified as well.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

Table 1: Fixed value fields in all types of certificates

Certificate field Type Fixed value
tbsCertificate.version INTEGER 2 (X.509v3 only)
tbsCertificate.signature.algorithm OID ecdsaWithSHA256 (RFC5758: {iso(1), member-

body(2) us(840) ansi-X9-62(10045)
signatures(4) ecdsa-with-SHA2(3) ecdsa-with-
SHA256(2)})

tbsCertificate.signature.parameters ANY Omitted completely (not encoded as NULL
parameter, see RFC5758 section 3.2.)

tbsCertificate.subjectPublicKeyInfo
.algorithm.algorithm

OID ecPublicKey (RFC3279: {iso(1) member-
body(2) us(840) ansi-X9-62(10045) id-public-
key-type(2) id-ecPublicKey(1)})

tbsCertificate.subjectPublicKeyInfo
.algorithm.parameters
.namedCurve

ANY

OID

EcpkParameters, namedCurve (RFC3279)
prime256v1 (RFC5758: {iso(1) member-
body(2) us(840) ansi-X9-62(10045) curves(3)
prime(1) prime256v1(7)})

signatureAlgorithm.algorithm OID ecdsaWithSHA256 (RFC5758: {iso(1), member-
body(2) us(840) ansi-X9-62(10045)
signatures(4) ecdsa-with-SHA2(3) ecdsa-with-
SHA256(2)})

signatureAlgorithm.parameters ANY Omitted completely (not encoded as NULL
parameter, see RFC5758 section 3.2.)

3.1.3. End entity certificates
For server certificates, performing server hostname validation is mandatory, using
the dNSName field of the Subject Alternative Name x509 extension only. As defined
by RFC6125 (For further reference see [RFC6125] section 6.4.3. Checking of
Wildcard Certificates), wildcards are only supported for leftmost part of the
hostname. Using the legacy Common Name in the Subject field for hostname
validation is not supported. If the Extended Key Usage x509 extension is present, it
must be verified that it allows the use of the certificate for server authentication (i.e.
it contains the object identifier id-kp-serverAuth).
For client certificates, verification of the identity of the end entity is completely
application specific and is therefore out of scope of this profile. If the Extended Key
Usage x509 extension is present, it must be verified that it allows the use of the
certificate for client authentication (i.e. it contains the object identifier id-kp-
clientAuth).

3.1.4. Certification path validation
As already indicated, the simplified certification path validation for the Lightweight
X.509 certificate profile is based on the Basic Path Validation from RFC5280 (For
further reference see [RFC5280] section 6.1: Basic Path Validation), but it is

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

simplified based on pragmatic assumptions on practical security requirements and
current deployment of X.509 certificates in major cloud services.
The certification path validation starts at a trusted CA certificate that is used as Root
of Trust. As specified by RFC5280, multiple Roots of Trust can be supported at the
same time, but only one will lead to a successful validation of a given path. It is
assumed that the certificate chain received is complete and already in the correct
order (starting with the end entity certificate). For each certificate in the chain it must
be verified that its Issuer field matches the Subject field of the certificate that issued
it until the Root of Trust is reached. It is assumed that the Subject and Issuer fields
are identically encoded along the chain, so a simple comparison (e.g. using memcmp)
of the entire structure of both fields can be used for this verification and no decoding
of their internal structure is needed. In almost all cases this simplifying assumption
is true in practice, as there is no valid reason to encode these structures differently
for the same entity. In addition, the signature of each certificate must be verified
against the public key of the certificate that issued it and the validity period of each
certificate needs to be checked.

3.2. Compact certificate creation guidelines

The goal of the compact certificate creation guidelines defined in the following
subsections is to provide guidance on how to create compact certificates and
certificate chains that are fully compliant with the Lightweight X.509 certificate
profile. In contrast to the simplified certificate and certificate chain validation rules,
the creation guidelines can be more restrictive as they do not have to consider
interoperability with certificates that have already been deployed.

3.2.1. All certificates
The following fixed values and other restrictions apply to fields in all types of
certificates as specified by the following table (Table 2).

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

Table 2: Restrictions for all types of certificates

Certificate field Type Restriction description
tbsCertificate.version INTEGER Fixed value: 2 (X.509v3 only)
tbsCertificate.signature.algorithm OID Fixed value: ecdsaWithSHA256 (RFC5758:

{iso(1), member-body(2) us(840) ansi-X9-
62(10045) signatures(4) ecdsa-with-SHA2(3)
ecdsa-with-SHA256(2)})

tbsCertificate.signature.parameters ANY Omitted completely (not encoded as NULL
parameter, see RFC5758 section 3.2.)

tbsCertificate.subjectPublicKeyInfo
.algorithm.algorithm

OID Fixed value: ecPublicKey (RFC3279: {iso(1)
member-body(2) us(840) ansi-X9-62(10045)
id-public-key-type(2) id-ecPublicKey(1)})

tbsCertificate.subjectPublicKeyInfo
.algorithm.parameters
.namedCurve

ANY

OID

Fixed value: EcpkParameters, namedCurve
(RFC3279) prime256v1 (RFC5758: {iso(1)
member-body(2) us(840) ansi-X9-62(10045)
curves(3) prime(1) prime256v1(7)})

signatureAlgorithm.algorithm OID Fixed value: ecdsaWithSHA256 (RFC5758:
{iso(1), member-body(2) us(840) ansi-X9-
62(10045) signatures(4) ecdsa-with-SHA2(3)
ecdsa-with-SHA256(2)})

signatureAlgorithm.parameters ANY Omitted completely (not encoded as NULL
parameter, see RFC5758 section 3.2.)

issuerUniqueID Not allowed (see RFC5280: CAs conforming to
this profile MUST NOT generate certificates with
unique identifiers.)

subjectUniqueID Not allowed (see RFC5280: CAs conforming to
this profile MUST NOT generate certificates with
unique identifiers.)

serialNumber Max 20 bytes (see RFC5280)
Issuer Only PrintableString or UTF8String supported

for DirectoryString (see RFC5280 section
4.1.2.4.)
X.500 Names identically encoded along the
chain (to avoid having to decode and match the
individual parts on the client)

Subject Only PrintableString or UTF8String supported
for DirectoryString (see RFC5280 section
4.1.2.4.)
X.500 Names identically encoded along the
chain (to avoid having to decode and match the
individual parts on the client)

3.2.2. Root and intermediate CA certificates
In all created CA certificates, the Basic Constraints X.509 extension must be present
and must be marked critical (see also CA/Browser Forum baseline requirements

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

[CABreq]). The cA field of the Basic Constraints extension must be set to True and the
pathLenConstraint field should be omitted if not needed to restrict the length of the
chain.
In addition, the Key Usage X.509 extension must be present and must be marked
critical. Its bit positions for keyCertSign and cRLSign must be set (see also
CA/Browser Forum baseline requirements [CABreq]).
As the Subject Alternative Name X.509 extension is not needed for CA certificates it
should be omitted completely.

3.2.3. End entity certificates
All end entity certificates should have an empty Subject field as the Subject
Alternative Name X.509 extension is used instead. Therefore, the Subject Alternative
Name extension must be present and must be marked as critical (see also
CA/Browser Forum baseline requirements [CABreq]). Both the Basic Constraints and
the Key Usage X.509 extensions should be omitted completely (they are optional in
the CA/Browser Forum baseline requirements [CABreq]).
Server certificates must contain a dNSName field in their Subject Alternative Name
for hostname validation. For client certificates, verification of the identity of the end
entity is completely application specific and is therefore out of scope of this profile.
The Extended Key Usage X.509 extension must be present and must contain the OID
id-kp-serverAuth for server certificates and the OID id-kp-clientAuth for client
certificates (see also CA/Browser Forum baseline requirements [CABreq]).

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

4. Conclusion
It is expected that TLS version 1.2 will still be around for quite some time to come,
especially in the area of IoT. Therefore, a Light-Weight TLS (LWTLS) profile was
presented here, geared towards IoT devices. The LWTLS profile significantly reduces
the number of optional features in TLS 1.2, removes any insecure backwards
compatibility features, and strongly restricts the options available during connection
establishment while remaining compatible with existing implementations commonly
deployed in cloud servers. The resulting security level of LWTLS can be compared to
what TLS 1.3 offers (except for new features such as handshake encryption, key
update messages and forward-secrecy in session resumption). However, for many
IoT devices and use cases, this may simply not be necessary in the near future, while
the additional complexity makes TLS 1.3 unfeasible for these devices. We believe that
LWTLS can be used in a way that is sufficiently secure for a large number of use cases,
particularly in IoT.
In contrast to TLS 1.2, no successor to X.509v3 public-key certificates is in sight, even
though the verification of these certificates has been a major source of vulnerabilities
in the past. This is due to the complexity of its format, its validation rules and the large
amount of options and features that need to be taken into account. Therefore, the
Light-Weight X.509 profile was presented here that improves implementation
security and reduces memory, processing and bandwidth requirements. This is
achieved by pre-defining sensible and secure choices, removing optional or outdated
features, simplifying validation rules and providing guidance on creating compact
certificates and certificate chains. To ensure interoperability with existing cloud
services, the choices made are based on how X.509 certificates are typically used in
practice.
The Light-Weight X.509 profile is meant to complement the Light-Weight TLS profile
(e.g. by matching the crypto choices made there for TLS 1.2), but it can also be used
independently.

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

5. References
[CABreq] CA/Browser forum baseline requirements:

https://cabforum.org/baseline-requirements-certificate-contents/
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.5.7-29-Apr-2018.pdf

[certIEEE1] draft-lonc-tls-certieee1609-01: “Transport Layer Security (TLS) Authentication using ITS ETSI and
IEEE certificates” (https://tools.ietf.org/html/draft-lonc-tls-certieee1609-01)

[certIEEE2] draft-tls-certieee1609-01: “TLS 1.3 Authentication using ETSI TS 103 097 and IEEE 1609.2
certificates” (https://tools.ietf.org/html/draft-tls-certieee1609-01)

[ECQV] draft-campagna-tls-ecmqv-ecqv-01: “ECMQV_ECQV Cipher Suites for Transport Layer Security (TLS)”
(https://tools.ietf.org/html/draft-campagna-tls-ecmqv-ecqv-01)

[ISO9594] ISO/IEC 9594-8:2017 “Information technology -- Open Systems Interconnection -- The Directory --
Part 8: Public-key and attribute certificate frameworks” (https://www.iso.org/standard/72557.html)

[RFC3279] RFC 3279 “Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile” (https://tools.ietf.org/html/rfc3279)

[RFC3280] RFC 3280 “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile” (https://tools.ietf.org/html/rfc3280), superseded by RFC 5280

[RFC4279] RFC 4279 “Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)”
(https://tools.ietf.org/html/rfc4279)

[RFC5077] RFC 5077 “Transport Layer Security (TLS) Session Resumption without Server-Side State”
[RFC5246] RFC 5246 “The Transport Layer Security (TLS) Protocol Version 1.2”
[RFC5280] RFC 5280 “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)

Profile” (https://tools.ietf.org/html/rfc5280)
[RFC5758] RFC 5758 “Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA

and ECDSA” (https://tools.ietf.org/html/rfc5758)
[RFC6066] RFC 6066 “Transport Layer Security (TLS) Extensions: Extension Definitions”
[RFC6091] RFC 6091 “Using OpenPGP Keys for Transport Layer Security (TLS) Authentication”

(https://tools.ietf.org/html/rfc6091)
[RFC6125] RFC 6125 “Representation and Verification of Domain-Based Application Service Identity within

Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer
Security (TLS)” (https://tools.ietf.org/html/rfc6125)

[RFC6347] RFC 6347 “Datagram Transport Layer Security Version 1.2”
[RFC6655] RFC 6655 “AES-CCM Cipher Suites for Transport Layer Security (TLS)”
[RFC7250] RFC 7250 “Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer

Security (DTLS)”
[RFC7251] RFC 7251 “AES-CCM Elliptic Curve Cryptography (ECC) Cipher Suites for TLS”
[RFC7252] RFC 7252 “The Constrained Application Protocol (CoAP)”
[RFC7457] RFC 7457 “Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS

(DTLS)”
[RFC8422] RFC 8422 “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)

Versions 1.2 and Earlier” (replaces older RFC 4492)
[RFC8446] RFC 8446 “The Transport Layer Security (TLS) Protocol Version 1.3”

(https://tools.ietf.org/html/rfc8446)
[SEC4] SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV)

(http://www.secg.org/sec4-1.0.pdf)
[X.509] ITU-T Recommendation X.509 (10/16): “X.509 : Information technology - Open Systems

Interconnection - The Directory: Public-key and attribute certificate frameworks”
(http://www.itu.int/rec/T-REC-X.509-201610-I/en)

https://cabforum.org/baseline-requirements-certificate-contents/
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.5.7-29-Apr-2018.pdf
https://tools.ietf.org/html/draft-lonc-tls-certieee1609-01
https://tools.ietf.org/html/draft-tls-certieee1609-01
https://tools.ietf.org/html/draft-campagna-tls-ecmqv-ecqv-01
https://www.iso.org/standard/72557.html
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3280
https://tools.ietf.org/html/rfc4279
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5758
https://tools.ietf.org/html/rfc6091
https://tools.ietf.org/html/rfc6125
https://tools.ietf.org/html/rfc8446
http://www.secg.org/sec4-1.0.pdf
http://www.itu.int/rec/T-REC-X.509-201610-I/en

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC
www.nxp.com

	Abstract
	1. Introduction
	1.1. Light-Weight TLS profile
	1.2. Light-Weight X.509 certificate profile

	2. Light-Weight TLS
	2.1. HMAC and the Pseudorandom Function
	2.2. LWTLS Record Protocol
	2.2.1. Connection states
	2.2.2. Record layer and protection

	2.3. LWTLS Handshaking Protocols
	2.3.1. Change Cipher Spec protocol
	2.3.2. Alert protocol
	2.3.3. Handshake protocol overview
	2.3.4. Hello Request
	2.3.5. Client Hello
	2.3.6. Server Hello
	2.3.7. Hello extensions
	2.3.8. Server Certificate
	2.3.9. Certificate Request
	2.3.10. Server Key Exchange Message
	2.3.11. Client Certificate
	2.3.12. Client Key Exchange message
	2.3.13. Certificate Verify

	2.4. Cryptographic computations
	2.5. LWTLS mandatory cipher suite
	2.6. Application data protocol
	2.7. Additional behavioral requirements
	2.8. Security considerations
	2.9. Light-Weight DTLS

	3. Light-Weight X.509 profile
	3.1. Certificate and certificate path validation rules
	3.1.1. All certificates
	3.1.2. Intermediate CA certificates
	3.1.3. End entity certificates
	3.1.4. Certification path validation

	3.2. Compact certificate creation guidelines
	3.2.1. All certificates
	3.2.2. Root and intermediate CA certificates
	3.2.3. End entity certificates

	4. Conclusion
	5. References

