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A Light-Weight TLS and X.509 Profile 
Abstract 
This document describes a restricted profile for TLS 1.2 suitable for application in 
constrained devices such as IoT devices. It also describes a profile for X.509 public key 
certificates. The main advantage of the TLS profile is that it severely restricts the 
number of optional features being used and limits the choice of cipher suites to a single 
one. This can result in smaller and less complex implementations, with a smaller attack 
surface. The profile for X.509 has a similar aim: improving security by reducing 
complexity and optional features. It is assumed that the reader is familiar with the 
details of TLS 1.2 as specified in RFC 5246 and with the X.509v3 standard described in 
RFC 5280 and how it is used by web servers as specified by the CA/Browser Forum. 

1. Introduction 
Recently, the standardization of TLS version 1.3 has been finalized (see [RFC8446]). 
However, it is expected that TLS version 1.2 [RFC5246] will still be around for quite 
some time to come.  
There are good reasons that TLS 1.2 is being succeeded by TLS 1.3. Since 2008, when 
TLS 1.2 was first published, the network security landscape has evolved significantly. 
Multiple security vulnerabilities have been discovered in these past years: in the 
specification of TLS 1.2 itself, the cryptography it uses and the various commonly-
used implementations of it. 
However, all kinds of relatively low-cost consumer and embedded devices, 
particularly IoT devices, as well as the networking infrastructure on which it depends, 
will likely keep using TLS 1.2 for the foreseeable future. These devices are typically 
constrained devices, having little processing power, working memory and storage. 
They often run a software stack that has not been developed and is not actively 
maintained by the device manufacturer, but is, for example, an open source stack or 
provided by the board and/or IC manufacturer(s). 

1.1. Light-Weight TLS profile 

Even though TLS 1.2 is no longer state of the art and over the years multiple security 
problems have been discovered around its use, this does not mean that TLS 1.2 is 
completely insecure in and of itself. A significant source of security problems with 
implementations of TLS 1.2 has been the large number of optional features, the 
various choices that can or have to be made during connection establishment and 
backwards compatibility options to support earlier and weaker versions of the 
protocol. 
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Examples of these include: 
 CVE-2012-4929, a.k.a. “CRIME”: a session hijacking attack using information 

leaked when using optional compression feature 
 CVE-2013-0169, a.k.a. “Lucky Thirteen”: a timing side-channel attack during 

handling of invalid messages 
 CVE-2014-0160, a.k.a. “Heartbleed”: attacking the implementation of an optional 

heart-beat extension 
 CVE-2014-8730, a.k.a. “POODLE” (newest variant): attacking TLS/SSL versions 

before TLS 1.2 on the improper checking of padding bytes after decryption 
 CVE-2015-7575, a.k.a. “SLOTH”: attacking old hash functions 
 CVE-2015-0204, a.k.a. “FREAK”: a downgrade attack to export-grade RSA 
 CVE-2015-0205, a.k.a. “SKIP-TLS”: an attack on the TLS state machine 

implementations to skip encryption altogether  
 CVE-2015-4000, a.k.a. “Logjam”: a downgrade attack to export-grade Diffie-

Hellman 
 CVE-2016-0800, a.k.a. “DROWN”: a protocol attack on servers that still support 

SSLv2 
 CVE-2017-13099 (and many others), a.k.a. “ROBOT””: attacking a vulnerability 

from 1998 with RSA, that was still not properly fixed 

An overview of various other attacks and vulnerabilities is also provided by 
[RFC7457]. 
When making sensible and secure choices by using the right configuration 
parameters, choosing the correct cryptographic algorithms, restricting most of the 
optional features in TLS 1.2, and removing the backwards compatibility features, we 
believe it can still be used in a way that is sufficiently secure for a large number of use 
cases.  
This can be accomplished in such a way that the resulting profile is significantly 
reduced in complexity while remaining backwards compatible to existing TLS 1.2 
implementations commonly deployed in cloud servers. The resulting security level 
can and will never be exactly comparable to what TLS 1.3 can offer. However, for 
many IoT devices and use cases, this may simply not be necessary in the near future. 
This document specifies exactly such a configuration as a TLS 1.2 profile. It is called 
Light-Weight TLS (LWTLS). 

1.2. Light-Weight X.509 certificate profile 

In all versions of TLS and DTLS, authentication based on a Public Key Infrastructure 
(PKI) using X.509 certificates1 is the default and the most widely used method for the 

                                                        
1  X.509 is defined by the standardization sector (ITU-T) of the International Telecommunications 
Union (ITU) as Recommendation X.509 (for the latest version from 2016 see [X.509]) and is also 



 

 NXP Semiconductors, High Tech Campus 60, 5656 AG Eindhoven, the Netherlands PUBLIC 
www.nxp.com 

communication peers to authenticate each other. Like TLS (including its predecessor 
SSL), X.509 has a very long history and has been continuously extended by adding 
new options and features as well as deprecating older features. Due to the complexity 
of the certificate format and the certificate validation rules that is further increased 
by the abundance of options and features that need to be taken into account, 
implementing algorithms to parse and validate certificates is a very difficult task and 
countless security vulnerabilities have been discovered in implementations over the 
years. Apart from its inherent implementation security issues, the complexity of 
X.509 certificate validation also significantly increases processing overhead and code 
size. In addition, certificates and certificate chains can grow very large depending on 
which options and features are selected during creation, how much additional 
metadata is added and how it is encoded. 
Therefore, constrained embedded devices are especially impacted by authentication 
based on X.509 certificates due to their very limited amount of memory, processing 
capacity and bandwidth. Also, the software (firmware) on constrained devices is 
typically difficult to keep updated over the device lifetime in case security 
vulnerabilities are discovered or in case configuration changes in the PKI need to be 
supported. 
In contrast to TLS, no successor to X.509 is in sight. Several extensions of TLS have 
been standardized to add support for alternatives that do not rely on a PKI (like pre-
shared keys (PSK) [RFC4279], raw public keys [RFC7250] and OpenPGP keys 
[RFC6091]) and the latest version TLS 1.3 added optional support for pre-shared keys 
and raw public keys in the base standard without extensions. These alternatives 
(especially PSKs) have been included in many connectivity standards for constrained 
devices (e.g. CoAP, Thread) as they significantly decrease the burden on the 
constrained device. For larger scale deployments or in open networks however, only 
a PKI based authentication provides enough flexibility and ease of deployment to be 
feasible. Attempts have also been made to define extensions specifying PKI-based 
alternatives for X.509 certificates for TLS (e.g. ECQV implicit certificates [SEC4] 
[ECQV], ETSI/IEEE certificates [certIEEE1] [certIEEE2]), but none have ever left draft 
status. 
Similar to the situation with TLS 1.2, X.509 certificates will still have to be supported 
for the foreseeable future (in case of X.509 probably even longer as no alternative is 
in sight), even by low-cost constrained devices. As attempted by the Light-Weight 
profile for TLS 1.2 in section 2, the goal of section 3 is to define a Light-Weight profile 
for X.509 that improves implementation security and reduces memory, processing 

                                                        
standardized by the International Organization for Standardization (ISO) as ISO/IEC 9594-8 (for the 
latest version ISO/IEC 9594-8:2017 see [ISO9594]). In the context of TLS, the term “X.509 certificate” 
refers to the profile for version 3 of the X.509 certificate format (X.509v3) defined by the IETF in 
[RFC5280] and [RFC3280]. 
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and bandwidth requirements. This is achieved by pre-defining sensible and secure 
choices, removing optional or outdated features, simplifying validation rules and 
providing guidance on creating compact certificates and certificate chains. To ensure 
interoperability with existing cloud services, the choices made are based on how 
X.509 certificates are typically used in practice. 
The Light-Weight X.509 profile is meant to complement the Lightweight TLS profile 
(e.g. by matching the crypto choices made there for TLS 1.2), but it can also be used 
independently. 
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2. Light-Weight TLS 
As mentioned in the introduction, the main target for LWTLS is the class of 
constrained devices, especially IoT devices. However, in the definition of LWTLS there 
is nothing that restricts it to this class of devices.2 The LWTLS profile can be used by 
anyone wishing to configure TLS 1.2 as secure as possible without losing 
compatibility to plain standard TLS 1.2. 
The first and foremost requirement of LWTLS is that it is compatible with servers 
implementing regular TLS 1.2. This means that it does not introduce any new 
extensions, cryptographic algorithms or protocol options. (This also somewhat 
restricts what can be done to achieve as much security as possible.) 
The second requirement is that it removes or disables any obsolete, unused or 
insecure TLS 1.2 protocol options. All backward compatibility to earlier TLS versions 
is dropped, as this automatically prevents any version downgrade attacks. No 
outdated and insecure cryptographic algorithms are supported. Only up-to-date 
secure cryptographic algorithms are supported. 
The third requirement is that the LWTLS profile is fixed. Extensibility is considered 
undesirable as it is a potential future security risk. As mentioned before, LWTLS does 
not introduce any new extensions itself. Also, runtime reconfigurability can pose a 
security risk, so an established LWTLS connection is not reconfigurable or 
renegotiable. 
As an added benefit, both for security and device resource requirements, it is 
expected that an optimized LWTLS implementation is less complex, smaller and 
requires less device resources such as RAM and processing power. 
The following description follows closely the description and ordering of the sections 
of the original TLS 1.2 protocol in [RFC5246]. It is assumed that the reader is well-
acquainted with the contents of that document, especially with the concepts and 
terms introduced in it. Technical details and behavior of LWTLS that are not 
specifically defined below are understood to be as specified for TLS 1.2 in [RFC5246]. 
In addition to [RFC5246], LWTLS makes use of the following additional RFCs: 
 RFC 8422 “Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer 

Security (TLS) Versions 1.2 and Earlier” for the ECDHE_ECDSA key exchange 
algorithm and client authentication mechanism ‘ECDSA_sign’ 

 RFC 6655 “AES-CCM Cipher Suites for Transport Layer Security (TLS)” for the 
AES-CCM data encryption algorithm 

 RFC 7251 “AES-CCM Elliptic Curve Cryptography (ECC) Cipher Suites for TLS” for 
the definition of the TLS_ECDHE_ECDSA_WITH_AES_128_CCM cipher suite 

                                                        
2 LWTLS can also be used in the boot-ROM of an SoC or in trusted firmware running in internal RAM, 
where there are code size restrictions, for example, for implementing a firmware update procedure. 
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 RFC 6066 “Transport Layer Security (TLS) Extensions: Extension Definitions”, 
section 3 “Server Name Indication” 

 RFC 5077 “Transport Layer Security (TLS) Session Resumption without Server-
Side State” 

 RFC 4347 “Datagram Transport Layer Security Version 1.2” 

2.1. HMAC and the Pseudorandom Function 

Like TLS 1.2, LWTLS 1.2 uses the HMAC construction to compute a pseudo-random 
function (PRF) needed to do expansion of secrets into blocks of data for the purposes 
of key generation or validation. LWTLS uses the exact same HMAC based on SHA-256 
as TLS 1.2. 

2.2. LWTLS Record Protocol 

The TLS 1.2 Record Protocol definitions are used without any modifications to 
preserve backwards compatibility. However, a number of restrictions and 
simplifications are made to both simplify implementations and ensure improved 
security. 
The four protocols described for TLS 1.2 that use the record protocol are also used in 
LWTLS: the handshake protocol, the alert protocol, the change cipher spec protocol, 
and the application data protocol. Apart from the four content types specified in 
[RFC5246], no additional record content types are supported by LWTLS. 
So, every LWTLS Record Protocol message is a valid one in standard TLS 1.2, however, 
the opposite may not always be the case. 

2.2.1. Connection states 
The connection state for LWTLS is identical to that of TLS 1.2. As in TLS 1.2, the initial 
current state always specifies that no encryption, compression, or MAC will be used. 
While in this state, application data must not be sent. 
When the sequence number reaches 264-1, no renegotiation is done (as that is not 
supported by LWTLS). Instead, a fatal alert is sent and the connection is terminated. 

2.2.2. Record layer and protection 
In contrast to TLS 1.2, LWTLS has no support for compression and decompression, 
nor for fragmentation and defragmentation. Applications using LWTLS must 
therefore take care that their messages do not exceed 214 bytes. 
In the initial current state, the cipher suite is TLS_NULL_WITH_NULL_NULL. When 
this cipher suite is selected, no application data must be sent. 
LWTLS only supports AEAD mode for record payload protection; CBC mode is not 
supported. All key calculation is done as for TLS 1.2. 
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2.3. LWTLS Handshaking Protocols 

LWTLS supports the same three subprotocols for handshaking as [RFC5246]: 
 Change Cipher Spec protocol 
 Alert protocol 
 Handshake protocol 

2.3.1. Change Cipher Spec protocol 
The Change Cipher Spec protocol used by LWTLS is unchanged from that specified by 
TLS 1.2. However, as renegotiation is not supported by LWTLS, the complications for 
the Change Cipher Spec protocol associated with that do not exist for LWTLS. 

2.3.2. Alert protocol 
LWTLS does not support the AlertLevel “warning”. Sent alert messages in LWTLS 
must always be “fatal”, therefore any received alert shall always be considered fatal, 
resulting in the immediate termination of the connection. In case any other 
connections exist corresponding to the same session, these must be terminated too. 
Such connections must not be resumed. 

2.3.3. Handshake protocol overview 
In contrast to TLS 1.2, the Server must always send a Server Certificate message. 
Server authentication is required. In essentially all real-world use cases, especially for 
IoT, it makes no sense to connect to an unknown server.  

 
Figure 1 Message flow for a full LWTLS handshake (* indicates optional messages) 
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2.3.4. Hello Request 
As renegotiation is not supported by LWTLS, a server supporting LWTLS should not 
send any Hello Request messages. An LWTLS client must ignore any such message. 

2.3.5. Client Hello 
The ClientHello message is as defined in TLS 1.2 with the following restrictions: 
 client_version: This field must be set to 3.3 (the highest version supported by TLS 

1.2). 
 cipher_suites: This field must only contain 

TLS_ECDHE_ECDSA_WITH_AES_128_CCM. 
 compression_methods: This field must only contain CompressionMethod.null (‘0’, 

no compression). 

For further restrictions on extensions, see 2.3.7 below. 
As in [RFC5246], after sending the ClientHello message, the client waits for a 
ServerHello message.  Any handshake message returned by the server, except for a 
HelloRequest, is treated as a fatal error. 

2.3.6. Server Hello 
The ServerHello message is exactly the same as for TLS 1.2. If the server only supports 
LWTLS, it should reject any ClientHello message that does not conform to the 
restrictions specified in section 2.3.5 above. It should also reject any ClientHello 
message that does not contain the mandatory signature algorithms extension, or if it 
contains any other extensions than the allowed ones, as specified in section 2.3.7 
below. 

2.3.7. Hello extensions 
LWTLS supports the following extensions in the ClientHello message: 
 Signature algorithms extension, as defined in TLS 1.2 
 Server Name Indication (SNI) extension, as defined in section 3 of [RFC6066] 
 SessionTicket extension, as defined in [RFC5077] 

For the signature algorithms extension in LWTLS, the only supported hash algorithm 
is SHA-256 and the only supported signature algorithm is ECDSA. This extension is 
mandatory for LWTLS. The client must send it and if the server does not accept it, the 
connection must be terminated. 
The Server Name Indication (SNI) extension is required by some cloud service 
operators to be able to present multiple certificates from the same IP address. It is 
not mandatory, but if it is used, the client must check that the server name in the 
extension matches that on the certificate (as specified in [RFC6066]). 
The ticket-based session resumption is used exactly as specified in [RFC5077]. The 
use of this extension is optional. 
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No other extensions are supported by LWTLS. The procedure for the detection of the 
presence of extensions is as specified in [RFC5246]. When a client requests session 
resumption, it must send the same extensions as it would send if it were not 
attempting resumption. 

2.3.8. Server Certificate 
As server authentication is mandatory in LWTLS, a server must always send a 
Certificate message during the handshake. As LWTLS clients only support ECC 
algorithms, all public keys included in the certificate chain, including the server public 
key itself, must be ECDSA keys. 

2.3.9. Certificate Request 
The server can optionally request client authentication. If it does, it must request only 
the ECDSA_sign mechanism in its CertificateRequest message. 

2.3.10. Server Key Exchange Message 
The server must send a ServerKeyExchange message. It must contain an ephemeral 
ECDH public key (freshly generated) and the specification of the elliptic curve 
secp256r1 (NamedCurve value 23, as defined in [RFC8422]).  This message must be 
signed using the ECDSA private key corresponding to the public key in the server’s 
certificate.  

2.3.11. Client Certificate 
In case of client authentication, the client public key in the Certificate message must 
be an ECDSA key. Any intermediate public keys in the certificate chain, if present, are 
preferably also ECDSA keys. 

2.3.12. Client Key Exchange message 
As LWTLS only supports ECDHE, the ClientKeyExchange message will always be of 
the ClientDiffieHellmanPublic variant. 

2.3.13. Certificate Verify 
As specified in [RFC5246], this message is only sent following a ClientCertificate 
message. LWTLS only supports client authentication through ECDSA_sign. The 
structure of the message is as defined in [RFC8422], with sha_hash being a SHA-256 
hash value. 

2.4. Cryptographic computations 

The calculation of the master_secret value is done exactly as specified for TLS 1.2. 
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2.5. LWTLS mandatory cipher suite 

As listed in the restrictions on the ClientHello above, LWTLS only supports the cipher 
suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM (value {0xC0, 0xAC}, as defined in 
[RFC7251] and [RFC8422]) and only ECDSA_sign as client authentication mechanism 
(as defined in [RFC8422]). The support for ECC is even further restricted so that 
LWTLS clients (and, optionally, servers) only need to support a limited set of ECC 
options. 
The only ECC curve supported by LWTLS is secp256r1 (a.k.a. P-256). Furthermore, 
LWTLS implementations only support uncompressed points. 

2.6. Application data protocol 

Application data messages are carried by the record layer. They are encrypted based 
on the current connection state. Application protocols must not continue to exchange 
data (in plain) after the TLS connection is closed. 

2.7. Additional behavioral requirements 

In addition to the requirements above, closure of the TLS connection must also result 
in closure of the network connection. 

2.8. Security considerations 

The choice for the cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM results in 
the use of the most up-to-date and state-of-the-art cryptographic algorithms defined 
in accepted standards and supported by most TLS implementations. 
The choice for ECDHE results in some amount of forward secrecy: the security of 
connections based on different ECDH keys will not depend on each other’s secret 
keys. LWTLS implementations must therefore always generate a new private key for 
each new connection. However, the RNG of a constrained device (such as typically the 
case with LWTLS) may still have a bias, making the security perhaps less than optimal. 
In case of a resumed connection, however, the connection security will depend on the 
confidentiality of the keys of the original connection. In case ticket-based session 
resumption is used, the security may also depend on the key storage and management 
practices on the server side. This may seem like session resumption is not the most 
secure feature to support. However, session resumption allows a constrained device 
to set up a TLS connection very quickly without doing any public key calculations, 
which can be very costly and slow on a constrained device. 
The choice for AES-CCM instead of, for example, AES-GCM, which seems to be 
commonly preferred by server implementations, is driven by the fact that the 
implementation of AES-CCM on a constrained device without (complete) hardware 
acceleration is typically more efficient than that of AES-GCM. 
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2.9. Light-Weight DTLS 

The LWTLS profile can also be applied to DTLS 1.2 [RFC6347], resulting in a Light-
Weight DTLS (LWDTLS) profile. All the same restrictions that apply for LWTLS also 
apply for LWDTLS. 
The result is large compatible with the DTLS profile for CoAP [RFC7252]. The main 
difference is that CoAP has opted for the TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 
cipher suite, using 8 bytes for authentication, instead of 
TLS_ECDHE_ECDSA_WITH_AES_128_CCM, which uses the full 16 bytes. Another 
difference is that LWDTLS lacks support for pre-shared AES keys and raw public 
ECDSA keys. 
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3. Light-Weight X.509 profile 
The Light-Weight X.509 certificate profile is mostly defined as a simplified subset of 
the “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation 
List (CRL) Profile” standardized by the IETF as RFC5280 (for further reference see 
[RFC5280]). The guidelines for compact certificate creation are additionally based on 
the “Baseline Requirements for Contents of Publicly Trusted SSL/TLS Certificates” 
specified by the CA/Browser Forum (For further reference see [CABreq]). As in the 
Lightweight TLS profile, a deliberate choice is made to support only one 
cryptographic algorithm for each kind of cryptographic operation and the choices 
made match those from the TLS profile.   

3.1. Certificate and certificate path validation rules  

Because of the fixed choices for cryptographic algorithms and supported options, 
certificate parsing and validation can be simplified in many cases (e.g. by just 
comparing individual fields or even a complete substructure of the certificate against 
the only supported values). The certificate validation rules are detailed in the 
following subsections based on the certificate type they are applied against. Only the 
contents (payload) of the fields listed here are validated, for the rest of the certificate 
structure only consistency with the X.509 certificate format is checked (e.g. field type, 
consistent length). This also applies to X.509 extensions, so Certificate Policies, Policy 
Mappings, Policy Constraints, Name Constraints, Certificate Revocation Lists and all 
related X.509 extensions as well as any other extensions not explicitly mentioned in 
this profile are not supported.  

3.1.1. All certificates 
All types of certificates will contain the following fixed value fields with only the 
predefined payload value allowed as specified by the following table (Table 1). 
The X.509v3 extension fields of the certificate are validated based on the type of 
certificate, but for all types of certificates it must be checked that there are no critical 
extensions present that are not supported. 

3.1.2. Intermediate CA certificates 
In addition to the checks that apply to all types of certificates, it must be verified for 
all intermediate CA certificates that the Basic Constraints x509 extension is present 
and its cA field is set to true. If the optional maxPathLen field is present it must be 
verified as well. 
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Table 1: Fixed value fields in all types of certificates 

Certificate field Type Fixed value 
tbsCertificate.version INTEGER 2 (X.509v3 only) 
tbsCertificate.signature.algorithm OID ecdsaWithSHA256 (RFC5758: {iso(1), member-

body(2) us(840) ansi-X9-62(10045) 
signatures(4) ecdsa-with-SHA2(3) ecdsa-with-
SHA256(2)}) 

tbsCertificate.signature.parameters ANY Omitted completely (not encoded as NULL 
parameter, see RFC5758 section 3.2.) 

tbsCertificate.subjectPublicKeyInfo 
.algorithm.algorithm 

OID ecPublicKey (RFC3279: {iso(1) member-
body(2) us(840) ansi-X9-62(10045) id-public-
key-type(2) id-ecPublicKey(1)}) 

tbsCertificate.subjectPublicKeyInfo 
.algorithm.parameters 
.namedCurve 

ANY 
 
OID 

EcpkParameters, namedCurve (RFC3279) 
prime256v1 (RFC5758: {iso(1) member-
body(2) us(840) ansi-X9-62(10045) curves(3) 
prime(1) prime256v1(7)}) 

signatureAlgorithm.algorithm OID ecdsaWithSHA256 (RFC5758: {iso(1), member-
body(2) us(840) ansi-X9-62(10045) 
signatures(4) ecdsa-with-SHA2(3) ecdsa-with-
SHA256(2)}) 

signatureAlgorithm.parameters ANY Omitted completely (not encoded as NULL 
parameter, see RFC5758 section 3.2.) 

 

3.1.3. End entity certificates 
For server certificates, performing server hostname validation is mandatory, using 
the dNSName field of the Subject Alternative Name x509 extension only. As defined 
by RFC6125 (For further reference see [RFC6125] section 6.4.3.  Checking of 
Wildcard Certificates), wildcards are only supported for leftmost part of the 
hostname. Using the legacy Common Name in the Subject field for hostname 
validation is not supported. If the Extended Key Usage x509 extension is present, it 
must be verified that it allows the use of the certificate for server authentication (i.e. 
it contains the object identifier id-kp-serverAuth). 
For client certificates, verification of the identity of the end entity is completely 
application specific and is therefore out of scope of this profile. If the Extended Key 
Usage x509 extension is present, it must be verified that it allows the use of the 
certificate for client authentication (i.e. it contains the object identifier id-kp-
clientAuth). 

3.1.4. Certification path validation 
As already indicated, the simplified certification path validation for the Lightweight 
X.509 certificate profile is based on the Basic Path Validation from RFC5280 (For 
further reference see [RFC5280] section 6.1: Basic Path Validation), but it is 
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simplified based on pragmatic assumptions on practical security requirements and 
current deployment of X.509 certificates in major cloud services.  
The certification path validation starts at a trusted CA certificate that is used as Root 
of Trust. As specified by RFC5280, multiple Roots of Trust can be supported at the 
same time, but only one will lead to a successful validation of a given path. It is 
assumed that the certificate chain received is complete and already in the correct 
order (starting with the end entity certificate). For each certificate in the chain it must 
be verified that its Issuer field matches the Subject field of the certificate that issued 
it until the Root of Trust is reached. It is assumed that the Subject and Issuer fields 
are identically encoded along the chain, so a simple comparison (e.g. using memcmp) 
of the entire structure of both fields can be used for this verification and no decoding 
of their internal structure is needed. In almost all cases this simplifying assumption 
is true in practice, as there is no valid reason to encode these structures differently 
for the same entity. In addition, the signature of each certificate must be verified 
against the public key of the certificate that issued it and the validity period of each 
certificate needs to be checked. 

3.2. Compact certificate creation guidelines 

The goal of the compact certificate creation guidelines defined in the following 
subsections is to provide guidance on how to create compact certificates and 
certificate chains that are fully compliant with the Lightweight X.509 certificate 
profile. In contrast to the simplified certificate and certificate chain validation rules, 
the creation guidelines can be more restrictive as they do not have to consider 
interoperability with certificates that have already been deployed.  

3.2.1. All certificates 
The following fixed values and other restrictions apply to fields in all types of 
certificates as specified by the following table (Table 2). 
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Table 2: Restrictions for all types of certificates 

Certificate field Type Restriction description 
tbsCertificate.version INTEGER Fixed value: 2 (X.509v3 only) 
tbsCertificate.signature.algorithm OID Fixed value: ecdsaWithSHA256  (RFC5758: 

{iso(1), member-body(2) us(840) ansi-X9-
62(10045) signatures(4) ecdsa-with-SHA2(3) 
ecdsa-with-SHA256(2)}) 

tbsCertificate.signature.parameters ANY Omitted completely (not encoded as NULL 
parameter, see RFC5758 section 3.2.) 

tbsCertificate.subjectPublicKeyInfo 
.algorithm.algorithm 

OID Fixed value: ecPublicKey  (RFC3279: {iso(1) 
member-body(2) us(840) ansi-X9-62(10045) 
id-public-key-type(2) id-ecPublicKey(1)}) 

tbsCertificate.subjectPublicKeyInfo 
.algorithm.parameters 
.namedCurve 

ANY 
 
OID 

Fixed value: EcpkParameters, namedCurve 
(RFC3279) prime256v1 (RFC5758: {iso(1) 
member-body(2) us(840) ansi-X9-62(10045) 
curves(3) prime(1) prime256v1(7)}) 

signatureAlgorithm.algorithm OID Fixed value: ecdsaWithSHA256 (RFC5758: 
{iso(1), member-body(2) us(840) ansi-X9-
62(10045) signatures(4) ecdsa-with-SHA2(3) 
ecdsa-with-SHA256(2)}) 

signatureAlgorithm.parameters ANY Omitted completely (not encoded as NULL 
parameter, see RFC5758 section 3.2.) 

issuerUniqueID  Not allowed (see RFC5280: CAs conforming to 
this profile MUST NOT generate certificates with 
unique identifiers.) 

subjectUniqueID  Not allowed (see RFC5280: CAs conforming to 
this profile MUST NOT generate certificates with 
unique identifiers.) 

serialNumber  Max 20 bytes (see RFC5280) 
Issuer  Only PrintableString or UTF8String supported 

for DirectoryString (see RFC5280 section 
4.1.2.4.) 
X.500 Names identically encoded along the 
chain (to avoid having to decode and match the 
individual parts on the client) 

Subject  Only PrintableString or UTF8String supported 
for DirectoryString (see RFC5280 section 
4.1.2.4.) 
X.500 Names identically encoded along the 
chain (to avoid having to decode and match the 
individual parts on the client) 

 

3.2.2. Root and intermediate CA certificates 
In all created CA certificates, the Basic Constraints X.509 extension must be present 
and must be marked critical (see also CA/Browser Forum baseline requirements 
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[CABreq]). The cA field of the Basic Constraints extension must be set to True and the 
pathLenConstraint field should be omitted if not needed to restrict the length of the 
chain. 
In addition, the Key Usage X.509 extension must be present and must be marked 
critical. Its bit positions for keyCertSign and cRLSign must be set (see also 
CA/Browser Forum baseline requirements [CABreq]). 
As the Subject Alternative Name X.509 extension is not needed for CA certificates it 
should be omitted completely. 

3.2.3. End entity certificates 
All end entity certificates should have an empty Subject field as the Subject 
Alternative Name X.509 extension is used instead. Therefore, the Subject Alternative 
Name extension must be present and must be marked as critical (see also 
CA/Browser Forum baseline requirements [CABreq]). Both the Basic Constraints and 
the Key Usage X.509 extensions should be omitted completely (they are optional in 
the CA/Browser Forum baseline requirements [CABreq]). 
Server certificates must contain a dNSName field in their Subject Alternative Name 
for hostname validation. For client certificates, verification of the identity of the end 
entity is completely application specific and is therefore out of scope of this profile. 
The Extended Key Usage X.509 extension must be present and must contain the OID 
id-kp-serverAuth for server certificates and the OID id-kp-clientAuth for client 
certificates (see also CA/Browser Forum baseline requirements [CABreq]). 
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4. Conclusion 
It is expected that TLS version 1.2 will still be around for quite some time to come, 
especially in the area of IoT. Therefore, a Light-Weight TLS (LWTLS) profile was 
presented here, geared towards IoT devices. The LWTLS profile significantly reduces 
the number of optional features in TLS 1.2, removes any insecure backwards 
compatibility features, and strongly restricts the options available during connection 
establishment while remaining compatible with existing implementations commonly 
deployed in cloud servers. The resulting security level of LWTLS can be compared to 
what TLS 1.3 offers (except for new features such as handshake encryption, key 
update messages and forward-secrecy in session resumption). However, for many 
IoT devices and use cases, this may simply not be necessary in the near future, while 
the additional complexity makes TLS 1.3 unfeasible for these devices. We believe that 
LWTLS can be used in a way that is sufficiently secure for a large number of use cases, 
particularly in IoT. 
In contrast to TLS 1.2, no successor to X.509v3 public-key certificates is in sight, even 
though the verification of these certificates has been a major source of vulnerabilities 
in the past. This is due to the complexity of its format, its validation rules and the large 
amount of options and features that need to be taken into account. Therefore, the 
Light-Weight X.509 profile was presented here that improves implementation 
security and reduces memory, processing and bandwidth requirements. This is 
achieved by pre-defining sensible and secure choices, removing optional or outdated 
features, simplifying validation rules and providing guidance on creating compact 
certificates and certificate chains. To ensure interoperability with existing cloud 
services, the choices made are based on how X.509 certificates are typically used in 
practice. 
The Light-Weight X.509 profile is meant to complement the Light-Weight TLS profile 
(e.g. by matching the crypto choices made there for TLS 1.2), but it can also be used 
independently. 
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